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Abstract

Cyclic parthenogens alternate asexual reproduction with periodic episodes of sexual reproduc-

tion. Sexually produced free-living forms are often their only way to survive unfavorable periods.

When sexual reproduction requires the mating of two self-incompatible individuals, mating lim-

itation may generate an Allee effect, which makes small populations particularly vulnerable to

extinction; parthenogenetic reproduction can attenuate this effect. However, asexual reproduc-

tion likely trades off with sexual reproduction. To explore the evolutionary implications of such a

trade-off, we included recurrent mating events associated with seasonal interruptions in a simple

population dynamics model. Following an adaptive dynamics approach, we showed that positive

density dependence associated with Allee effects in cyclic parthenogens promotes evolutionary

divergence in the level of investment in asexual reproduction. Although polymorphism may be

transient, morphs mostly investing into sexual reproduction may eventually exclude those pre-

dominantly reproducing in an asexual manner. Asexual morphs can be seen as making coopera-

tive investments into the common pool of mates, while sexual morphs defect, survive better, and

may eventually fix in the population. Our findings provide a novel hypothesis for the frequent

coexistence of sexual and asexual lineages, notably in plant parasitic fungi.
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1 Introduction

Sexual reproduction is often associated with ecological functions, such as the formation of struc-

tures able to persist, disperse, or both (Williams, 1975; Abrahamson, 1980). Even in species

capable of both sexual and asexual reproduction, i.e. cyclic parthenogens, sexual reproduction

is often the only way to produce structures able to resist winter frost or summer drought. In

aphids for instance, eggs are the only cold-resistant stages (Simon et al., 2002). In the cladocer-

ans Daphnia (Tessier and Cáceres, 2004) or Bythotrephes (Wittmann et al., 2011), diapausing

eggs are encapsulated in a cold- and drought-protective envelope. The same applies to cyclically

parthenogenetic rotifers (Carmona et al., 2009). Winter survival is also associated with resistance

stages in therophyte plants which complete their life cycle during the favorable season and pro-

duce seeds to cope with the adverse season. Many plant pathogens, such as fungi and oomycetes,

produce thick-walled structures able to cope with adverse environments and to germinate under

favorable conditions, e.g., oospores in oomycetes, ascospores in fungi.

Beyond the well-known cost of meiosis (Williams, 1975), sexual reproduction can have de-

mographic consequences. As an example, the lower the population density, the lower the likeli-

hood of finding a mate. Sexual reproduction therefore entails a positive correlation between one

component of growth rate (mating success) and population density, called a component Allee

effect (Allee et al., 1949). In fact, mating limitation has been reported as the most common

mechanism leading to Allee effects (Gascoigne et al., 2009). These effects associated with sex-

ual stages have been detected in several taxa such as the wild radish Raphanus sativus L. (Elam

et al., 2007), the estuarine grass Spartina alternifora (Davis et al., 2004) and the European gypsy

moth Lymantria dispar (Vercken et al., 2011). Under some circumstances, such component Allee

effects may give rise to extinction threshold population densities, a phenomenon called a strong

Allee effect. The occurrence of such an Allee effect depends on the features of reproductive
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systems (e.g., overwintering sexual stages, selfing) as well as on social or spatial clustering.

Determining whether or not component Allee effects translate into extinction thresholds has trig-

gered numerous studies (Kramer et al., 2009). Yet the consequences of mating limitation have

seldom been considered in parasites (Garrett and Bowden, 2002; Krkošek et al., 2012).

Organisms having a dual sexual-asexual reproductive mode are expected to be less vulnerable

to Allee effects than exclusively sexual ones. Such a mode of reproduction is typical of many

parasites, including aphids, oomycetes and fungi. Interestingly, it has been reported that the level

of investment in asexual reproduction is variable within species with obligate sexual reproduction

(Simon et al., 2002; Tessier and Cáceres, 2004; Carmona et al., 2009). For instance, European

populations of the ascomycete Leptosphaeria maculans, which causes stem canker (blackleg) on

Brassica species, are almost exclusively sexual, while Western Canadian populations invest more

in asexual reproduction (Dilmaghani et al., 2012). In Saskatchewan province, polymorphism in

sexual mode of reproduction has even been reported. Polymorphism also occurs in poplar rust,

caused by the basidiomycete Melampsora larici-populina; in France, several genetic groups with

markedly different asexual reproduction levels have been reported (Xhaard et al., 2011). In this

study, we focus on polymorphism at such a relatively small spatial scale.

Since asexual and sexual reproduction rely on the production of different structures, one may

expect a resource allocation dilemma between them (Chamberlain et al., 1997; Schoustra et al.,

2010). High investment in asexual reproduction should to some extent lead to a detrimental

effect on sexual offspring quantity (Michelmore and Ingram, 1980; Chamberlain et al., 1995)

or viability, as repeatedly detected in perennial plants (Vallejo-Marı́n et al., 2010). A trade-off

between asexual reproduction and offspring survival when the host is absent has been reported

in natura for several plant pathogenic fungi (Carson, 1998; Abang et al., 2006; Sommerhalder

et al., 2010, 2011).

Trade-offs between parasite asexual reproduction capacities and survival out of the host have
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also been previously considered in studies on parasites that produce free-living forms (Gandon,

1998; Day, 2002; Caraco and Wang, 2008), and has for instance been observed in phages of

Escherichia coli (De Paepe and Taddei, 2006). Such a trade-off was theoretically shown to

support the emergence of polymorphism in strategies of survival outside the host where parasites

relying on direct host-to-host transmission coexist with parasites able to survive through free-

living forms (Boldin and Kisdi, 2012). A model of evolution of plant pathogens living in seasonal

environments showed conditions for coexistence between parasites with very contrasted abilities

to overwinter (Hamelin et al., 2011). It also demonstrated that the emergence and maintenance

of polymorphism was attributable to negative density-dependence at the onset of the epidemic,

i.e. during primary infections, since it cannot be explained by the trade-off alone (van den Berg

et al., 2011).

In cyclic parthenogens, negative density-dependence during the season (population regulation

through competition for resources) alternates with positive density-dependence at the end of

the season, i.e. component Allee effects associated with sexual reproduction. In other words,

population density can be viewed as a common good for mating. Because asexual reproduction

trades off with survival, reproducing asexually within the season may be interpreted as a heavy

investment in the common good, and investing much in sexual reproduction as a defection. Since

cooperation can generate evolutionary diversification (Doebeli and Dieckmann, 2000; Day and

Young, 2004; Doebeli et al., 2004; Doebeli, 2011), we wondered whether obligate sexual survival

could generate disruptive selection for investment in asexual reproduction, with evolutionary

coexistence of sexual (defectors) and asexual (cooperators) lineages.

To investigate this, we model the seasonal dynamics of a pathogen population, using a semi-

discrete formalism (Mailleret and Lemesle, 2009). The key feature of the model is that within-

season asexual reproduction is followed by an obligate sexual episode at the end of season.

Sexual survival forms therefore constitute the primary inoculum for the next season. We focus on
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plant parasitic fungi to make explicit model assumptions but keep the model as simple as possible

for the sake of generality. First, we analyze population dynamics over ecological timescales,

showing that the component Allee effect associated with sexual reproduction translates into an

extinction threshold density for the parasite population, i.e. a strong demographic Allee effect.

Then, we consider the fate of a mutant differing in its investment in sexual reproduction and

describe the complex evolutionary outcomes associated with Allee effects. Finally, we discuss

the relevance of these results with respect to observed variability in asexual investment.

2 Ecology

2.1 Model

Let (P,S, I) denote the densities of primary inoculum (sexual survival forms), susceptible and

infected host, respectively. T denotes the length of one cycle, τ < T the time during which the

host is present, i.e., the growing season length, and n a cycle index. N denotes the total host

density, assumed constant during a growing season. Lastly, sexual reproduction is assumed to

result from the interaction between individuals with compatible mating types. We also consider

only two mating types (designated as − or +) as in most species (Billiard et al., 2011). I− and I+

denote the densities of hosts infected by ‘−’ or ‘+’ mating types, respectively (I = I−+ I+). The

following steps of model definition are schematically represented in figure 1.

During host presence. Secondary infection dynamics are described as an SI model (Anderson

and May, 1991). New infections occur at a rate proportional to both susceptible host density (S)

and infected host density (I). The secondary infection rate β is identical for both mating types.
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Let İ = dI/dt. For all t between nT and nT + τ , the model reads


İ− = β (N− I−− I+)I− ,

İ+ = β (N− I−− I+)I+ ,
(1)

where (N − I− − I+) = S. To keep the model as simple as possible, we have considered that

infected hosts remain infectious throughout the season. This simplification fits many plant dis-

eases, such as soil-borne fungal diseases (Bailey and Gilligan, 1999) or viral diseases (Fabre

et al., 2012). The resulting dynamics are mathematically equivalent to logistic growth so that the

model is not restricted to plant diseases at this stage.

Transition from host presence to host absence. At time t = nT + τ , right before hosts disap-

pear, each infected host produces survival forms following sexual reproduction. In fungal plant

pathogens, sexual reproduction may result from contact between two adjacent lesions with com-

patible mating types, or from fecundation by air-borne gametes as in e.g., M. larici-populina. To

keep mathematical tractability, the mating function considered is simply bilinear in the densities

of + or − mating types:

P(nT + τ) = ΓI−(nT + τ)I+(nT + τ) . (2)

During host absence. Survival forms P are subjected to a constant between-season mortality

rate µ . Then, for all t between (nT + τ) and (n+1)T ,

Ṗ =−µP . (3)

One can solve equations (2) and (3), leading to

P((n+1)T ) = ΓI−(nT + τ)I+(nT + τ)e−µ(T−τ) . (4)
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Transition from host absence to host presence. At the beginning of each new season (time

t = (n+1)T ), a density N of susceptible hosts is made available to the parasite, e.g. germinates

or is planted. The primary inoculum germinates and infects susceptible hosts, generating ‘−’

or ‘+’ progeny in equal probability. The primary inoculum converts into infected hosts with a

factor θ/ξ . This conversion factor derives from a model reduction technique (Appendix A.1)

based on the assumption that primary infections occur over a shorter time scale than subsequent

plant-to-plant secondary infections (Mailleret et al., 2012). Assuming that θ/ξ is small, the

model reads: 
I−((n+1)T ) = 1

2
θ

ξ
P((n+1)T ) ,

I+((n+1)T ) = 1
2

θ

ξ
P((n+1)T ) .

(5)

For the sake of simplicity, we stick to this assumption in the remaining of this section. Appendix

A.1 presents the model that was actually used in this study; it is slightly more technical but holds

for any θ/ξ value.

Thence, the infection cycle (1-4-5) starts again.

Model simplification. Eq. (5) shows that after the first episode of sexual reproduction, the

mating-type ratio remains unbiased forever. In addition, model (1-4-5) can be simplified by

setting I = I− + I+ . Let χ = (θ/ξ )(Γ/4)e−µ(T−τ). The model now reads, for all t between nT

and nT + τ ,

İ = β (N− I)I , (6)

and

I((n+1)T ) = χI(nT + τ)2 . (7)
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Model (6-7) can be further reduced to:

I((n+1)T ) = χ

(
I(nT )N

Ne−βNτ + I(nT )(1− e−βNτ)

)2

. (8)

The above discrete-time equation maps the density at the beginning of one season I(nT ) onto

the density at the beginning of the next season I((n+1)T ).

2.2 Strong Allee effect

At low infected host density (I� N), Eq. (8) simplifies to

I((n+1)T )
I(nT )

≈ χe2βNτ I(nT ) , (9)

which shows that parasite reproductive ratio increases with infected host density i.e., the parasite

population undergoes a component Allee effect. This is a direct consequence of the mating

function used in Eq. (2).

The reproductive ratio I((n+1)T )/I(nT ), computed from Eq. (8) as a function of population

density I(nT ), determines the fate of the parasite population (figure 2; Appendix A.2). It may

never reach 1 (figure 2A-C), so that the dynamics converge to the disease free equilibrium (I = 0)

and the parasite goes extinct whatever its initial density. If parameter values are such that the

reproductive ratio reaches 1 for certain densities (figure 2B-D), Eq. (8) has three fixed points: the

disease free equilibrium and an endemic equilibrium Ie, which are both stable, as well as a critical

unstable fixed point Ic (0 < Ic < Ie), separating the dynamics between extinction (I < Ic) and

convergence to the endemic equilibrium Ie (I > Ic). If the reproductive capacities of the parasite

are high enough, and provided its initial population density is large enough, it may persist on

a year-to-year equilibrium, generating T -periodic epidemic outbreaks. The model cannot show
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year-to-year cycles or chaotic behavior when a single morph is considered.

3 Evolution

We will now turn to investigating the evolutionary implications of these Allee effects. Following

an adaptive dynamics approach (Metz et al., 1992; Dieckmann and Law, 1996; Diekmann, 2004),

we have derived an invasion criterion for an initially rare mutant phenotype, challenging a distinct

resident phenotype.

The secondary infection rate β represents investment in asexual reproduction, as it is pro-

portional to the number of asexual spores produced per infected individual per unit time within

the season. We assumed that β trades off with survival ability. The per capita mortality rate

µ is therefore an increasing function f of β . In what follows, we refer to the pair (β ,µ) as a

single ecological trait which is further assumed to depend on a single multi-allelic locus. Mat-

ing is also assumed to be coded by a single independent locus. We have focused on a haploid

species in which survival forms result from meiosis (Heitman et al., 2007; Coluccio et al., 2008).

As a consequence, sexual survival forms inherit each allele from either parental cell with equal

probability for both the mating type and the ecological trait.

3.1 Evolutionary invasion analysis

We have assumed that evolution proceeds through successive mutations arising within a resident

population which have reached permanent ecological dynamics, as opposed to transient ones.

The dynamics of each emerging mutant can be predicted by deriving an invasion criterion. To

this end, we have extended model (6-7) to two subpopulations (resident and mutant), denoted by

subscripts 1 and 2.

Each subpopulation contains both mating-types ‘−’ and ‘+’ in equal proportions (Section 2.1).
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For instance, I1 = I1,++ I1,− represents the subpopulation having the ecological trait (β1,µ1).

During the season (t between nT and nT + τ), the continuous part is described by:


İ1 = β1I1 (N− I1− I2) ,

İ2 = β2I2 (N− I1− I2) .

(10)

At the end of the season, offspring is generated from the mating of two parents that have

either the same ecological trait, as in Eq. (7), or two different traits, i.e. I1,−× I2,++ I1,+× I2,− =

2×(I1/2)(I2/2). In the latter case, because the parasite is haploid, each offspring has probability

1/2 of inheriting either parental allele for each trait. Therefore, offspring production for each

trait, at time t = nT + τ , is



P1(t) = Γ


(

I1(t)
2

)2

︸ ︷︷ ︸
resident×resident

+1
2 ×2× I1(t)

2
I2(t)

2︸ ︷︷ ︸
resident×mutant

 ,

P2(t) = Γ

 (
I2(t)

2

)2

︸ ︷︷ ︸
mutant×mutant

+1
2 ×2× I1(t)

2
I2(t)

2︸ ︷︷ ︸
resident×mutant

 .

(11)

Taking into account inter-season survival and primary infections results in the following dis-

crete part: 
I1((n+1)T ) = χ1

(
I1(nT + τ)2 + I1(nT + τ)I2(nT + τ)

)
,

I2((n+1)T ) = χ2
(
I2(nT + τ)2 + I1(nT + τ)I2(nT + τ)

)
.

(12)

where χi = (θ/ξ )(Γ/4)e−µi(T−τ) and µi = f (βi), for i = 1,2.

When no mutant is present, the dynamics of a resident population with trait β1 are governed

by Eq. (6-7) and therefore converge to a T -periodic invariant solution, I◦1 (t,β1) (Section 2.2).

Since the mutant is rare initially (I2� I1), its effects on the resident dynamics are negligible at
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first. During the first season

İ2 ≈ β2I2 (N− I◦1 ) ,

I2(T ) ≈ χ2 I◦1 (τ,β1)I2(τ) .

Let Ī◦1 = (1/τ)
∫

τ

0 I◦1 (t,β1)dt, so that N − Ī◦1 denotes the mean susceptible host density at

mutant-free equilibrium. We thus have I2(τ)≈ I2(0)eβ2τ(N−Ī◦1 ). The mutant can invade provided

that I2(T )> I2(0), which reads

I2(T )
I2(0)

≈ I◦1 (τ,β1)×χ2eβ2τ(N−Ī◦1 ) > 1, (13)

whereas if this quantity is less than one, the mutant goes extinct.

It is worth noting that the above invasion criterion is determined by two variables shaped by

the resident trait, i.e. mean susceptible host density (N− Ī◦1 ) and infected host density at the end

of the season I◦1 (τ,β1). Moreover, there is a positive relationship between the end-of-season resi-

dent population density and the mutant reproductive success. Because the mutant is initially rare,

it mainly mates with the resident. As a consequence, higher end-of-season resident population

density results in more frequent mutant sexual reproduction which enables it to overwinter.

3.2 Evolutionary outcomes

By definition of the endemic equilibrium, one has:

I◦1 (T )
I◦1 (0)

= I◦1 (τ,β1)×χ1eβ1τ(N−Ī◦1 ) = 1 . (14)
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Therefore, the invasion criterion (13) reads

I2(T )
I2(0)

≈ χ2eβ2τ(N−Ī◦1 )

χ1eβ1τ(N−Ī◦1 )
> 1 . (15)

We can thus derive an invasion fitness function as

s(β1,β2) = (β2−β1)(N− Ī◦1 (β1))τ− ( f (β2)− f (β1))(T − τ) . (16)

The invasion fitness s(β1,β2) is positive if phenotype β2 can invade resident phenotype β1; it is

negative otherwise. The (β1,β2) pairs for which the mutant initially invades or not are illustrated

in pairwise invasibility plots (PIP, figures 3A–6A).

Under the trade-off hypothesis, there may exist ranges of β trait values where ecological dy-

namics of a monomorphic population converge to the disease-free equilibrium which is actually

the only stable equilibrium (illustrated with light gray zones in figures 3B–6B). These phenotypic

ranges are henceforth referred to as a monomorphic extinction zones.

A necessary condition for a monomorphic population to split into a dimorphic population is

given by

∂ 2

∂β2
2 s(β1,β2)

∣∣∣∣
β1=β2=β

=− f ′′(β )(T − τ)> 0 . (17)

Hence, evolutionary branching is conditioned by the concavity of the trade-off function: it can

only occur under concave trade-off shapes ( f ′′ < 0).

Numerical simulations performed for model (10-12), using the algorithm detailed in Ap-

pendix B.2 and implemented in MATLAB version R2012b (Supplementary Material), showed

that under convex trade-offs, any initial population with β value above the monomorphic ex-

tinction zone continuously evolves towards a singular trait value β ?. Provided reaching β ? does

not require entering an extinction zone, the population monomorphically converges and stabi-
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lizes to β ? trait value (figure 3C,D). By contrast, whenever reaching β ? requires entering into

a monomorphic extinction zone, the population goes extinct (figure 4C,D). The density of the

mutant increases at first, taking advantage of the presence of the resident. During this phase, the

resident population decreases to extinction. The mutant eventually predominates but it also goes

extinct as it is unable to survive alone.

A concave trade-off is a necessary yet not sufficient condition for an initially monomorphic

population to evolve towards a branching point. When it does, as predicted by the PIP from

figure 5A, the parasite population splits into a morph investing decreasingly into asexual repro-

duction (morph (a)), and a morph doing the opposite (morph (b)). This dimorphism allows morph

(a) to cross the monomorphic extinction zone, because morph (b) provides it with mating oppor-

tunities. Morph (a) then becomes exclusively sexual (βmin = 0). The higher density corresponds

to the ecological dynamics of an exclusively sexual morph (a), with a cyclic parthenogen (b) oc-

curing at lower densities. For large βmax values, the cyclic parthenogen can also go extinct, and

the population becomes exclusively sexual (figure 6B). The relative increase in morph (b) density

benefits the exclusively sexual morph (a), which ends up saturating the environment and exclud-

ing morph (b). Such unilateral extinction is made possible by the fact that morph (a) reached the

critical population density to be able to survive alone (Ia > Ic for β = 0, see figures 6B and 7).

4 Discussion

4.1 Strong Allee effect and evolutionary extinction

That the component Allee effect linked to obligate mating causes a strong demographic Allee

effect in cyclic parthenogens is an important conclusion of this work. This may lead the popu-

lation to evolve to trait values where persistence is no longer possible, a phenomenon that has
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been termed “evolutionary extinction’’ or “evolutionary suicide’’ (Webb, 2003; Parvinen, 2005).

Whether or not these critical parameter ranges can be reached in nature is not yet known. One

may imagine that these ecological and evolutionary consequences of mate limitation might ulti-

mately explain why many species in temperate areas do not undergo obligate sexual reproduction

at the end of the season but rather adopt a mixed sexual-asexual survival strategy (Barrett et al.,

2008).

4.2 A novel mechanism promoting variability in reproductive strategies

Allee effects, i.e. positive density dependence, can promote evolutionary diversification as well.

Indeed, we showed that obligate sexual reproduction makes the invasion fitness depend on both

the mean resident density and the resident end-of-season density, which act on mutant invasion

fitness in opposite ways. The mean resident density decreases mutant fitness, since both com-

pete for susceptible hosts; the end-of-season resident density increases mutant fitness because it

enables the mutant to generate survival forms through sexual reproduction.

Under convex transmission-survival trade-offs, these opposite effects select for a mixed sexual-

asexual reproduction in cyclic parthenogens. The corresponding intermediate investment into

asexual reproduction has to be large enough to overcome Allee effects but small enough to ensure

sexual survival. By contrast, under concave trade-offs, selection is disruptive and the population

may undergo evolutionary branching.

After evolutionary branching occurs, continual phenotypic divergence is observed. Thus, the

population comprises a cyclical parthenogenetic morph with both high asexual reproduction rate

and low survival ability and an exclusively sexual morph, with high survival. When maintained,

such a dimorphism is a “tragedy of the commune” (Doebeli et al., 2004). Evolution leads to an

asymmetric state in which asexual morphs make cooperative investments in population density
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(a common good given the strong Allee effect) at the expense of a lower survival, while sexual

morphs invest nothing, survive better, and eventually reach higher densities.

4.3 Transitions from cyclical parthenogenesis to strict sexual reproduction

Evolution may alternatively drive the asexual morph to extinction. Although the sexual morph

has maximal survival capacities, it cannot survive as a single morph before it has reached a

quite elevated critical Allee density. During the transition, the sexual morph benefits from the

presence of the asexual morph as it increases sexual reproduction opportunities. Once the sexual

morph has grown above the Allee threshold, it may eventually exclude the asexual morph. Such

a phenomenon is termed “evolutionary murder” by some authors (Parvinen, 2005). Asexual

reproduction can thus be an evolutionary transient state leading to strict sexual reproduction.

A similar phenomenon is highlighted by Boldin and Kisdi (2012), who show that evolutionary

branching can ultimately select for a single parasite strain which excels in transmission via free-

living forms. An open-ended question is whether such complex evolutionary transitions might

happen in nature. Phylogenetic reconstructions of character states may help with this issue,

provided that adaptation is a slow process, long-lasting enough to be detected by phylogenetic

methods.

4.4 Disentangling ultimate causes of reproductive polymorphism

Possible mechanisms for polymorphism in sexual mode of reproduction include (i) temporal

variation in winter survival rates (Simon et al., 2002), (ii) local adaptation to fine-scale spatial

variation (Kawecki and Ebert, 2004), and (iii) Allee effects associated with obligate sexual re-

production, as shown in this study.

From their analysis of L. maculans populations, Dilmaghani et al. (2012) suggest that poly-

16



morphism in sexual mode of reproduction may be related to climatic conditions in Saskatchewan

province, which is akin to (i). In M. larici-populina, Xhaard et al. (2011) suggest that sexual and

almost asexual lineages evolved at the ends of an altitudinal gradient and happen to co-occur at

intermediate positions in the gradient, which is akin to (ii). Alternatively, it may be that in both

species, polymorphism results from (iii), Allee effects and obligate sexual reproduction.

Distinguishing between adaptive hypotheses can be challenging. Testing adaptation to tem-

poral variability in winter survival rates requires relating the variance in reproductive strategies

to climatic data as exemplified by Halkett et al. (2004) in aphids. Testing whether polymorphism

in reproductive strategies is selected as a local adaptation in a spatially heterogeneous environ-

ment implies reciprocal transplantations (Lenormand, 2002). If this mechanism is not involved,

sexual and almost asexual lineages should perform as well in every tested environment. Testing

whether Allee effects explain variability could be done by experimentally manipulating morph

frequencies, such as testing an advantage of the rarest in dimorphic plants (Gigord et al., 2001).

Lastly, an alternative mechanism for polymorphism involves multiple infections, as shown

by Alizon and van Baalen (2008) and Boldin and Diekmann (2008). Given a reasonably sensitive

genetic marker, it might be feasible to test this hypothesis (López-Villavicencio et al., 2011).

4.5 Perspectives

From a broader perspective, our study may shed light on the coexistence of male and non-male

producing clones in cyclic parthenogens such as Daphnia (Galimov et al., 2011). Producing

males is likely a costly venture. However, non-male producing morphs still have to mate with

male producing morphs to complete their life cycle. In our study, strictly sexual morphs similarly

depend on cyclic parthenogens for obligate mating to take place. By the same token, non-male

producing morphs (defectors) may indeed coexist with male-producing morphs (cooperators).
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Since we considered sexual reproduction obligate, our model has not been designed to an-

alyze whether sexual reproduction can out-compete asexual reproduction on an evolutionary

timescale. Nevertheless, the mechanism involved in the loss of a dual reproductive mode to-

wards exclusive sexual reproduction highlights the fact that complex dynamics may lead cyclic

parthenogens to become exclusively sexual. Further studies may reconsider the hypothesis of an

exclusively sexual overwintering survival, and investigate asexual survival possible as well. This

would pave the way toward addressing the emergence and the coexistence of exclusively sexual

and exclusively asexual lineages in nature, as well as the possible loss of sex.
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A Ecological model

A.1 Derivation of Eq. (5)

Here we briefly present the aggregation technique proposed by Mailleret et al. (2012) to reduce

semi-discrete seasonal epidemic models. This technique is based on the hypothesis that pri-

mary infections occur on a faster time scale than secondary infections. A full in-season model
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accounting for primary infections, primary inoculum depletion, and secondary infections reads:

Ṗ =−ξ

ε
SP ,

Ṡ =−θ

ε
SP−βS(I−+ I+) ,

İ− =
1
2

θ

ε
SP+βSI− ,

İ+ = 1
2

θ

ε
SP+βSI+ ,

where each primary infection generates ‘−’ or ‘+’ infected hosts in equal probability. Parameters

ξ and θ are associated with primary inoculum depletion and primary infections, and ε is a scaling

factor. At the beginning of the season S((n+1)T ) = N, I+((n+1)T ) = 0, I−((n+1)T ) = 0 and

P((n+1)T )> 0.

Assuming that primary infections occur on a faster time-scale than secondary infections

amounts to considering that ε is small. Rewriting the model in the time-scale corresponding

to primary infections (t ′ = t/ε), and neglecting the terms in ε , the model reads:

P′ =−ξ SP ,

S′ =−θSP ,

I′ = θSP ,

with the prime indicating derivatives with respect to t ′ and I = I+ + I− . Thus, on the time-scale

of primary infections, the quantity S− (θ/ξ )P remains equal to N− (θ/ξ )P((n+1)T ), so that

one has:

S′ =−ξ S
(

S−
(

N− θ

ξ
P((n+1)T )

))
.

Since S((n+ 1)T ) = N > 0, S converges to max(0,N− (θ/ξ )P((n+ 1)T )) over the time scale

of primary infections. Accordingly, since S+ I = N, I converges to min((θ/ξ )P((n+ 1)T ),N)

over the time-scale of primary infections. When the primary inoculum is very infectious (large
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θ/ξ ), it can infect every susceptible hosts during the primary infection phase. When θ/ξ is

small, primary infections result in the linear conversion of primary inoculum into infected host,

as in Eq. (5), resulting in model (8).

A.2 Equilibria

Model (8)’s equilibria are fixed points I∗ = m(I∗) of the discrete-time map m : In 7→ In+1 from

Eq. (8). The disease-free equilibrium (DFE) I = 0 is a trivial fixed point. Apart from the DFE,

other equilibria may exist, depending on the following conditions.

If β = 0, one finds one additional fixed point: I = 1/χ . Otherwise (β > 0), two additional

fixed-point may exist, provided that

∆ = χN(χN−4e−βNτ(1− e−βNτ))> 0 . (18)

Let

Ic =
N
2

χN−2e−βNτ(1− e−βNτ)−
√

∆

(e−βNτ −1)2 ,

Ie =
N
2

χN−2e−βNτ(1− e−βNτ)+
√

∆

(e−βNτ −1)2 , (19)

thereafter referred to as critical and endemic equilibrium densities, respectively. One can easily

check that ∆ > 0 implies that Ie > Ic > 0.

An equilibrium I∗ is stable if |m′(I∗)|< 1 and unstable if |m′(I∗)|> 1. Since m′(0) = 0, the

DFE ( f (0) = 0) is stable in any event. Similarly, one can notice that for β = 0, m′(1/χ) = 2 so

that this non generic fixed-point is always unstable. Moreover, one can easily check that m is a

continuous and strictly increasing function, so that a graphical analysis suffices to show that Ic

and Ie are unstable and stable, respectively (Figure 2).
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B Phenotypic competition and evolution

B.1 Competition model

Considering a set of phenotypes {βi}, i = 1,2, . . . ,n, the in-season competition model reads:

Ṗi =−ξ

ε
SPi ,

Ṡ =−∑ j
θ

ε
SPj−∑ j β jSI j ,

İi =
θ

ε
SPi +βiSIi .

Proceeding as in Appendix A.1, and noticing that ri = Pi/∑ j Pj is a constant, we obtain, during

the season,

Ṡ = −∑ j β jSI j ,

İi = +βiSIi ,

(20)

and from season to season:

S((n+1)T ) = max
(

N− θ

ξ
∑ j Pj((n+1)T ) , 0

)
,

Ii((n+1)T ) = min
(

θ

ξ
Pi((n+1)T ) , N× Pi((n+1)T )

∑ j Pj((n+1)T )

)
,

(21)

where

Pi((n+1)T ) =
Γ

4
e−µi(T−τ)

(
Ii(nT + τ)∑

j
I j(nT + τ)

)
, (22)

see equation (11). When θ/ξ is small, primary infections results in the linear conversion of pri-

mary inoculum into infected hosts, with Ii tending to (θ/ξ )Pi((n+1)T ), which leads to Eq. (12).

Evolutionary computations were actually realized using the full model (20-21-22).
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B.2 Evolution algorithm

The evolving phenotype β ranges from 0 to βmax. This interval is divided into a finite number of

subintervals (n = 25). Simulations start from a monomorphic population having a given β trait

value. Once at ecological attractor, which we compute as the solution of the full competition

model after a fixed horizon of 10,000 years, a small mutation occurs, having an equal probability

of being on the left (smaller β ) or on the right (larger β ), regardless the subinterval considered.

Then the process reiterates.

B.3 Evolutionary exclusion dynamics

We additionally provide figure 7.
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Figures legends

Figure 1: Schematic representation of the different epidemic processes in the seasonal plant epi-
demic model. P (the primary inoculum) denotes survival forms resulting from sexual reproduc-
tion of two individuals having compatible mating types. S and I denote susceptible and infected
individual densities, respectively. Dashed lines represent processes occurring at the beginning
of the season (plants renewal and primary infections), solid lines represent secondary infections
occurring during a growing season, dashed-dotted lines represent sexual reproduction occurring
at the end of the host growing season, and the dotted line represents mortality of the sexual forms
between growing seasons.

Figure 2: Graphical illustration of the year-to-year model (8) in the two generic cases: global
extinction (left panels) and bi-stability typical of a strong Allee effect (right panels). Top row:
year n to year (n+ 1) reproductive ratio as a function of infected host density at the beginning
of year n. Bottom row: cobweb diagrams plotting infected host density at the beginning of year
(n+1) as a function of that at the beginning of year n. Gray squared-lines are typical season-to-
season dynamics produced by model (8) across years, eventually converging to the disease free
equilibrium (panel C and panel D) or to the endemic equilibrium Ie (panel D).

Figure 3: Evolutionary process leading to a monomorphic evolutionary endpoint (Section 3.2).
(A.) Pairwise invasibility plot (PIP). Areas where the mutant can invade are in dark gray. (B.)
Equilibria in the mutant-free ecological model, as a function of the resident trait: disease-free
equilibrium (I = 0, stable), Ic (unstable) and Ie (stable) or saturation (I = N, stable); black and
gray colors correspond to stable and unstable equilibria, resp. (C.) The associated evolutionary
dynamics; numerical simulations were realized using an algorithm which is described in Ap-
pendix B.2. The light gray areas (in panels A., B. and C.) correspond to resident trait values for
which the endemic equilibrium Ie does not exist i.e., to a monomorphic extinction zone (Appen-
dices B and A.2; Panel B.). (D.) Ecological dynamics at evolutionary endpoint. For all panels,
we used the following trade-off form: µ = f (β ) = cβ a, here a = 1.2 (trade-off shape: convex)
and c = 0.25 (trade-off coefficient), βmin = 0 and βmax = 6 (phenotypic boundaries), T = 1.5
(time unit), τ = 1 (time unit), N = 1 (host unit), θ = 1.06 (per primary inoculum unit per unit
time), ξ = 1 (per host unit per unit time), Γ = 4 (per squared host unit per unit time).
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Figure 4: Evolutionary process leading to extinction. We refer the reader to figure 3’s cap-
tion since the only change concerns the trade-off shape parameter: here, a = 2.5 (more convex
trade-off). Also, we took βmax = 3 for illustrative purposes. Last, Panel (D.) shows ecological dy-
namics right before the evolutionary endpoint (extinction) i.e., from the last mutation preceding
extinction, and over a far greater number of seasons than in figure 3D.

Figure 5: Evolutionary branching process leading to a dimorphic evolutionary endpoint (Sec-
tion 3.2). We refer the reader to figure 3 caption since the only change concerns the trade-off
shape parameter: here, a = 0.9 (concave trade-off).

Figure 6: Evolutionary process leading to extinction of one branch. We refer the reader to figure 3
caption since the only changes concern the trade-off parameters: here, a = 0.9 (concave trade-
off) and c = 0.21 (this deviation from figure 5 is for illustrative purposes only). However, we
took βmax = 10 (as compared to 6 in figure 5) to get extinction. Last, Panel (D.) shows ecological
dynamics right before the evolutionary endpoint (extinction of one branch) over a far greater
number of seasons, and over a far greater number of seasons than in figure 3D.

Figure 7: Zoom on exclusion dynamics in figure 6. (A.) Ecological equilibria for a mutant-
free monomorphic population as a function of the parasite trait β : the disease-free equilibrium
I = 0 and the endemic equilibria I = Ie and I = N (saturation) are stable (black lines), while
I = Ic is unstable (gray line). The light gray area corresponds to a monomorphic extinction zone
(Appendices B and A.2). (B.) Ecological dynamics leading to morph (b) exclusion. The black
and gray lines correspond to morph (a) and (b) dynamics, resp. The darker gray line corresponds
to the mutant arising from morph (b). We refer the reader to figure 6 caption for parameter values.
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