Exploitation des patchs d’hôtes par les parasitoïdes : apprentissage des signaux émis par les plantes

Eric LOMBAERT

Directeur de recherche : Xavier FAUVERGUE
Parrains scientifiques : Eric WAJNBERG
Thomas GUILLEMAUD

Institut National de la Recherche Agronomique d’Antibes – UMR ROSE
37, Boulevard du Cap – 06600 Antibes
REMERCIEMENTS

Je tiens avant tout à remercier Xavier Fauvergue, mon (jeune) maître de stage, qui m’a encadré, aidé, soutenu, conseillé, corrigé et re-corrigé pendant toute la durée de mon stage. Il m’a ainsi permis de “maximiser mon gain d’informations” et de m’immerger de la meilleure façon qui soit dans le monde fascinant de la recherche.

Un grand merci à Eric Wajnberg et Thomas Guillemaud, mes parrains scientifiques, dont les conseils et les coups de mains m’ont permis d’améliorer sensiblement la qualité de mon travail.

Merci à Michel Ponchet et Harald Keller pour leur temps et leur aide technique lors des extractions des odeurs de plantes.

Toute ma gratitude va à l’ensemble de l’équipe “Entomologie et Lutte Biologique” : chercheurs, ingénieurs, techniciens,… Tous m’ont prêté mains fortes avec le sourire lorsque j’en avais besoin.

Je remercie également le département Santé des Plantes et Environnement de l’INRA d’Antibes pour m’avoir soutenu financièrement au cours de ce stage.

Enfin, je remercie une lectrice anonyme qui m’a encouragé à poursuivre mes études et sans laquelle rien n’aurait été possible.
SOMMAIRE

1) **INTRODUCTION** .. 1

1.1) L’APPROVISIONNEMENT OPTIMAL CHEZ *LYSIPHLEBUS TESTACEIPES* .. 1

1.1.1) La théorie de l’approvisionnement optimale .. 1

1.1.2) *Lysiphlebus testaceipes* .. 1

1.2) LA REPARTITION DE L’EFFORT DE RECHERCHE DANS L’ESPACE ET LE TEMPS 2

1.3) L’ACQUISITION D’INFORMATION ... 3

1.3.1) l’omniscience ... 3

1.3.2) l’apprentissage .. 4

1.4) L’APPRENTISSAGE DANS UN ENVIRONNEMENT EN PATCHS .. 4

1.5) LE CAS DE *LYSIPHLEBUS TESTACEIPES* ... 6

1.5.1) L’apprentissage chez les insectes ... 6

1.5.2) L’optimalité chez *Lysiphlebus testaceipes* .. 7

1.5.3) Les synomones induites par l’herbivore .. 8

1.5.4) La notion de seuil .. 9

2) **EXPERIMENTATIONS** ... 110

2.1) MATERIEL ET METHODES ... 110

2.1.1) Matériel biologique ... 110

2.1.2) conditions d’élevage .. 112

2.1.3) La phase de conditionnement ... 113

2.1.4) La phase de test ... 114

2.1.5) Les analyses statistiques ... 114

2.2) EXPERIENCE 1 : APPRENTISSAGE DES SYNONOMES ET SEUIL DE PERCEPTION 115

2.2.1) Questions ... 115

2.2.2) Le conditionnement et le test ... 115

2.2.3) Résultats .. 16

2.3) EXPERIENCE 2 : EFFET DES PUCERONS ET DU PHYTOTRON SUR LA PLANTE 188

2.3.1) Question .. 188

2.3.2) Le conditionnement et le test ... 188

2.3.3) Résultats .. 19

2.4) EXPERIENCE 3 : VARIABILITE DE LA REPONSE AU TEMPS DE SEJOUR DANS LE PHYTOTRON 20

2.4.1) Questions ... 20

2.4.2) Le conditionnement et le test ... 21

2.4.3) Résultats .. 211

3) **DISCUSSION GENERALE** .. 22

3.1) LA PHYSIOLOGIE DE LA PLANTE ... 22

3.2) L’INTERET ECOLOGIQUE DE L’APPRENTISSAGE POUR *LYSIPHLEBUS TESTACEIPES* 24

3.3) L’OPTIMISATION DU COMPORTEMENT DE *LYSIPHLEBUS TESTACEIPES* 24

3.4) PERSPECTIVES ... 25

BIBLIOGRAPHIE .. 27
1) **Introduction**

1.1) **L’approvisionnement optimal chez *Lysiphlebus testaceipes***

1.1.1) **La théorie de l’approvisionnement optimale**

La structure d’une communauté dépend en grande partie des comportements d’acquisition de ressources (nourriture, hôte, partenaire sexuel, habitat) adoptés par les individus. De même, la densité d’une population dépend de l’efficacité avec laquelle ses membres sont capables de transformer les ressources en descendants. L’écologie comportementale, et plus particulièrement la théorie de l’approvisionnement optimal qui se base sur le principe d’optimisation, suppose que les comportements d’acquisition de ressources ont une base génétique, et sont donc modelés au cours de l’évolution par le processus de la sélection naturelle (pour une synthèse, voir Stephens & Krebs 1986 ; Cézilly & Benhamou 1996). Lorsqu’il exploite les ressources de son environnement, un animal se trouve confronté à un ensemble de choix comportementaux. Le plus souvent, les différentes possibilités ne sont pas équivalentes en termes d’aptitude phénotypique, c’est-à-dire de potentiel reproducteur à long terme. La théorie de l’approvisionnement optimal a pour objectif de déterminer la stratégie comportementale optimale, définie comme un ensemble de règles de décision qui permet à un individu de maximiser son aptitude phénotypique.

La théorie de l’approvisionnement optimal a été utilisée dans un grand nombre de contextes écologiques différents, mais l’un des modèles biologiques qui a été le plus étudié est le parasitoïde. En effet, l’hôte constitue pour les parasitoïdes une ressource qui a l’avantage de se “transformer” en descendant dès lors qu’elle a été acquise. Cette particularité permet de respecter l’hypothèse selon laquelle l’acquisition est corrigée à la fitness de l’animal. Une des principales critiques de la théorie de l’approvisionnement optimale (Pierce & Ollason 1987) est ainsi écartée.

1.1.2) **Lysiphlebus testaceipes**

Lysiphlebus testaceipes (Hymenoptera : Braconidae) est un parasitoïde généraliste de pucerons d’origine néotropicale. Il a été largement introduit dans de nombreuses régions du globe à des fins de lutte biologique (Carver 1984). Dans le Sud de la France, il est présent depuis 1973, date à laquelle il a été introduit à partir d’une souche originaire de Cuba. Importé
initialement afin de lutter contre les pucerons exotiques des agrumes, la souche s’est développée en Europe méditerranéenne (France, Espagne, Portugal, Italie). *Lysiphlebus testaceipes* est devenu un des parasitoïdes prédominants de nombreuses espèces de pucerons indigènes, ravageurs ou non des cultures (Stary et al. 1988).

Pour étudier l’optimisation du comportement d’un tel parasitoïde, il est primordial de bien connaître la dynamique des populations de son hôte, le puceron. Celui-ci vit en colonies localisées et de taille variable sur des plantes dont il suce la sève. La combinaison de la parthénogenèse et du chevauchement des générations lui confère un potentiel de multiplication exceptionnel, et par conséquent les densités de population d’hôtes pour *Lysiphlebus testaceipes* sont très variables selon la période de l’année (petits patchs en début de saison et gros patchs en milieu de saison). Rochat (1997), par exemple, a mesuré le taux d’accroissement d’*Aphis gossypii*, un des hôtes de *Lysiphlebus testaceipes* dans le sud de la France. Ce taux d’accroissement *r* est de 0.35 ce qui équivaut à un doublement de la population en moins de trois jours. Dans la nature, le nombre de pucerons disponibles pour le parasitisme peut donc théoriquement être multiplié par quatre ou cinq d’une génération de *Lysiphlebus testaceipes* à une autre.

L’espèce *Lysiphlebus testaceipes* se trouve donc confrontée à des environnements très changeants et dans lesquels les ressources sont agrégées. Par conséquent, l’optimisation du comportement de ce parasitoïde nécessite la résolution d’un certain nombre de problèmes liés à la répartition de son effort de recherche dans l’espace et le temps, et à l’acquisition d’informations lui permettant de connaître son environnement.

1.2) La répartition de l’effort de recherche dans l’espace et le temps

Dans la nature, comme c’est le cas pour *Lysiphlebus testaceipes*, les ressources sont fréquemment agrégées en “patches” bien délimités et de qualité variable. Sur un patch donné, la vitesse instantanée d’acquisition de ces ressources varie dans le temps : elle est forte lorsque l’animal arrive sur le patch car les ressources sont nombreuses, elle diminue au fur et à mesure de l’exploitation du patch du fait de la diminution de la quantité de ressources disponibles. La vitesse d'acquisition instantanée est nulle lorsque l’animal se déplace vers un autre patch. Dans ce type de situation, un animal tel que *Lysiphlebus testaceipes* doit “se demander” combien de temps il lui faut allouer à l’exploitation d’un patch donné afin de maximiser son gain à long terme. Le théorème de la valeur marginale (Charnov 1976) répond à cette question.
Figure 1 : Représentation graphique du modèle de Charnov (1976). Les points représentent les vitesses d’acquisition instantanées de l’animal. Ces vitesses sont nulles pendant le trajet entre les patchs. La ligne horizontale représente la vitesse d’acquisition moyenne maximale possible sur l’ensemble de l’environnement (γ^*).
Soit \(g_i(t_i) \) le gain net obtenu par un individu qui reste un temps \(t_i \) sur le patch \(i \). Cette fonction est croissante avec une accélération négative. L’animal maximise sa vitesse d’acquisition moyenne à long terme, \(\gamma^* \):

\[
\gamma^* = \frac{\sum p_i g_i(t_i)}{T + \sum p_i t_i}
\]

où \(p_i \) est la probabilité de rencontrer un patch \(i \), et \(T \) le temps de trajet (constant) entre deux patches. Le maximum de cette fonction peut être trouvé en dérivant \(\gamma^* \) par rapport à \(t_i \) et en annulant cette dérivée. On obtient l’équation suivante :

\[
\frac{dg_i(t_i)}{dt_i} = \gamma^*
\]

Cette égalité nous donne la principale prédiction du modèle : l’animal quitte le patch lorsque sa vitesse d’acquisition instantanée (la dérivée de la fonction de gain \(g_i(t_i) \)) aura atteint la vitesse d’acquisition moyenne maximale espérée pour tout l’environnement. La figure 1 représente graphiquement cette prédiction en considérant que, dans chaque patch, l’acquisition des ressources par l’animal suit une réponse fonctionnelle de type II (Holling 1959).

1.3) L’acquisition d’information

1.3.1) l’omniscience

Comme la plupart des modèles de base de la théorie de l’approvisionnement optimal, le théorème de la valeur marginale suppose que l’animal est omniscient, ce qui veut dire qu’il a une connaissance \textit{a priori} parfaite du milieu dans lequel il évolue. Il connaît notamment \(\gamma^* \) avant même d’avoir expérimenté l’environnement. Il est évident qu’une telle hypothèse est irréaliste et qu’un individu évolue la plupart du temps dans une situation d’information incomplète du fait de ses limitations sensorielles et cognitives. De plus, dans un environnement stochastique, un comportement optimal à un temps \(t \) ne le sera pas forcément à un temps \(t + 1 \) (Oaten 1977). Dès lors, il peut être intéressant pour l’animal d’acquérir des informations en même temps qu’il s’approvisionne en ressources (Stephens 1993; Ydenberg 1998).
1.3.2) l’apprentissage

Un animal non omniscient peut-il se comporter de manière optimale ? Pour répondre à cette question, il faut étudier théoriquement par la modélisation le cas d’un animal naïf ne possédant aucune information a priori, mais capable d’en acquérir et de l’utiliser. Considérons un animal ne connaissant pas par avance la vitesse moyenne maximale qu’il lui est possible de réaliser dans cet environnement, et qui quitte chaque patch à chaque fois que sa vitesse instantanée devient inférieure à la vitesse moyenne qu’il a déjà réalisée (la seule vitesse moyenne qu’il connaisse). McNamara & Houston (1985) ont montré que si l’animal utilisait cette règle, sa vitesse moyenne convergerait alors vers la vitesse moyenne maximale qu’il est possible de réaliser dans l’environnement. Cela suppose que l’animal peut apprendre la qualité des patches a posteriori.

L’apprentissage est un mécanisme d’acquisition d’information qui a été particulièrement étudié dans le cadre de la théorie de l’approvisionnement optimal. En effet, il peut présenter des bénéfices importants lorsque l’environnement est peu prédictible à l’échelle inter-générationnelle mais assez prédictible à l’échelle intra-générationnelle (Stephens 1991). Ainsi, l’apprentissage est souvent considéré comme une forme de plasticité phénotypique (Dukas 1998b) permettant à un individu de s’adapter aux variations à long terme de son environnement en estimant de manière subjective la qualité de celui-ci (Giraldeau 1997).

Plusieurs modèles d’apprentissage issus de la psychologie animale et des statistiques classiques ont été utilisés dans le cadre de la théorie de l’approvisionnement optimal. Certains se basent sur le théorème de Bayes (voir notamment McNamara & Houston 1980; Iwasa et al. 1981; Nishimura 1994) et d’autres sur des espérances mathématiques (McNamara & Houston 1987). Dans tous les cas, choisir un type de modèle plutôt qu’un autre n’est pas évident pour plusieurs raisons : (1) les mécanismes cognitifs en cause sont encore très mal connus et compris (Dukas 1998a) ; (2) ces mécanismes sont très variables d’un taxon à un autre et il n’existe donc pas de modèle type applicable à l’ensemble du règne animal ; (3) le type d’environnement, et notamment sa stabilité dans le temps, aura une très grande influence sur l’efficacité d’un mécanisme donné.

1.4) L’apprentissage dans un environnement en patchs

Afin de comprendre les effets de l’apprentissage sur les prédictions du théorème de la valeur marginale, McNamara & Houston (1985) ont utilisé des modèles d’apprentissage qui impliquent une dévaluation progressive du passé. Un certain nombre de modèles de ce type
Figure 2 : Représentation graphique du modèle de McNamara & Houston (1985) avec opérateur linéaire. Les points représentent les vitesses d’acquisition instantanées de l’animal. La ligne horizontale représente la vitesse d’acquisition moyenne maximale possible sur l’ensemble de l’environnement (γo). La ligne grise en pointillés représente l’estimation de cette vitesse moyenne par l’animal. Pour cette simulation, \(a = 0.02 \).

Figure 3 : Représentation graphique du temps de résidence optimal dans un patch d’hôtes en fonction de la vitesse d’acquisition moyenne apprise par le parasitoïde (voir formule analytique dans le texte). \(\beta = 1 ; H = 100 \).
existe, mais celui qui a eu le plus grand succès dans le cadre de la théorie de l’approvisionnement optimal est “l’opérateur linéaire” (Bush & Mosteller 1955). Il s’agit d’une fonction linéaire qui met à jour l’information en pondérant l’expérience passée et présente. C’est un modèle en temps discret qui suit la forme générale suivante :

\[\gamma(t+1) = aq + (1-a)\gamma(t) \quad \text{avec} \quad 0 < a < 1 \quad (4) \]

où \(\gamma \) est une estimation d’une variable (par exemple \(\gamma \) peut être l’estimation de la vitesse de capture moyenne par un prédateur), \(q \) est la mesure du gain présent, \(a \) est l’indice de mémorisation qui permet de pondérer l’expérience passée et présente. La capacité de ce modèle simple d’apprentissage à répondre à des problèmes écologiques a été démontrée de manière théorique (McNamara & Houston 1987; Bernstein et al. 1988; Bernstein et al. 1991), mais très peu au niveau expérimental (voir par exemple Milinski 1984).

Comme le montre la figure 2, L’utilisation de ce type de règle d’apprentissage permet à l’estimation de la vitesse moyenne de converger vers la vitesse moyenne maximale possible dans l’environnement (\(\gamma^* \)). Toutefois, il faut préciser que la vitesse de convergence dépend de la combinaison entre la valeur de l’indice de mémorisation \(a \) et la variabilité de l’environnement. Plus cet environnement est variable, plus il faut du temps pour converger vers l’optimalité.

Grâce au modèle de Charnov (1976), une prédiction peut être faite quant à la durée optimale que l’animal devra consacrer à l’exploitation d’un patch donné. Supposons un parasitoïde dont l’approvisionnement en hôtes fournit le gain suivant :

\[g_i(t_i) = H_i(1 - e^{-\beta_i}) \quad (5) \]

où \(H_i \) est le nombre d’hôtes dans le patch \(i \) (les rencontres se font au hasard), et \(\beta \) un paramètre constant corrélé à l’efficacité de l’acquisition d’hôtes du parasitoïde. La vitesse d’acquisition instantanée du parasitoïde est la dérivée \(g'_i(t_i) \) de cette fonction de gain, soit :

\[g'_i(t_i) = H_i \beta e^{-\beta_i} \quad (6) \]

Le parasitoïde devra quitter le patch lorsque cette vitesse instantanée sera descendue jusqu’à la vitesse moyenne apprise \(\gamma \). On a donc :

\[H_i \beta e^{-\beta_i} = \gamma \quad (7) \]

d’où :

\[t^*_i = -\frac{1}{\beta} \ln \frac{\gamma}{H_i \beta} \quad (8) \]

On en conclut que, pour une qualité de patch donnée (\(H_i \) constant), le temps de résidence optimal du parasitoïde sera d’autant plus faible que la vitesse d’acquisition moyenne apprise \(\gamma \) sera élevée (figure 3). Ainsi, le temps de résidence d’un animal sur un
Figure 4 : Représentation de la valeur relative d’un patch. Chaque cercle représente un patch dont la valeur est corrélée à son diamètre. Un animal s’approvisionne dans ces patchs en suivant le sens des flèches. Dans l’environnement 1, la valeur absolue du patch noir est VA_1, sa valeur relative est VR_1, et le temps de résidence optimal d’un animal sur ce patch est TR_1. Il en est de même dans l’environnement 2 avec la valeur absolue VA_2, la valeur relative VR_2 et le temps de résidence TR_2. Sur la figure, $VA_1 = VA_2$, $VR_1 < VR_2$ et $TR_1 < TR_2$.
patch de ressources dépendra de la valeur “relative” de ce patch dans son environnement, et non de sa valeur “absolue”. De ce fait, si un animal visite d’abord une série de patchs de valeurs absolues élevées, il restera moins longtemps sur un patch de valeur absolue moyenne que s’il visite d’abord une série de patchs de mauvaises valeurs absolues (figure 4).

1.5) Le cas de *Lysiphlebus testaceipes*

1.5.1) L’apprentissage chez les insectes

L’apprentissage chez les insectes est un processus à deux étapes : une phase de mémorisation à court terme et une phase de consolidation (Papaj & Prokopy 1989). La mémoire à court terme s’efface en quelques minutes, et un insecte qui expérimente des situations changeantes n’apprendra donc pas. On peut considérer ceci comme adaptatif puisque cela évite que la capacité de mémoire soit occupée par des informations peu fiables. Des mécanismes biochimiques, plus lents, permettent d’entreposer les informations à plus long terme. Pour ce type d’apprentissage, les modèles tels que les opérateurs linéaires sont de bons candidats.

L’intérêt évolutif de l’apprentissage chez les insectes dépendra du nombre de ressources potentielles. Ainsi, un insecte spécialiste qui n’utilise qu’un seul type de ressources n’aura un intérêt à apprendre que si la prédicibilité de la quantité de ressources est faible entre les générations successives, mais forte à l’intérieur d’une génération. Il en est de même pour les généralistes, mais ceux-ci ont en plus à résoudre l’aspect qualitatif : quelle est la ressource la plus présente dans l’environnement ? En règle générale, on devrait donc théoriquement trouver davantage la capacité d’apprentissage chez les insectes généralistes tels que *Lysiphlebus testaceipes* que chez les insectes spécialistes. L’évaluation de la qualité de l’environnement et l’apprentissage de la vitesse d’acquisition moyenne pourraient alors se développer conjointement.

Cependant, une question reste en suspens : si les insectes sont capables d’apprendre, qu’apprennent-ils ? Dans la plupart des cas, il s’agit de signaux chimiques. D’une manière ultime (étude coûts/bénéfices), ceux-ci peuvent être définis en trois grandes catégories (Dicke & Sabelis 1988) :
- Les allomones : favorables à l’émetteur, défavorables au receveur.
- Les kairomones : défavorables à l’émetteur, favorables au receveur.
- Les synomones : favorables à l’émetteur et au receveur.
Figure 5 : Temps de séjour moyens (± erreurs standards) de *Lysiphlebus testaceipes* sur une colonie de pucerons *Aphis gossypii* de deux jours après une phase de conditionnement. (a) Conditionnement sur colonie de puceron de un jour ou de trois jours. (b) “Expérience de 1999” : Conditionnement sur cotylédon sain d’une plante infestée par des pucerons depuis un jour ou trois jours. X. Fauvergue, com. pers.
Il est important de noter que, dans cette terminologie, l’émetteur du signal chimique et le receveur ne sont pas de la même espèce. Ainsi, un parasitoïde tel que *Lysiphlebus testaceipes* pourrait apprendre les signaux provenant de l’hôte (kairomones) ou ceux provenant de la plante (synomones) afin de mesurer sa vitesse d’acquisition moyenne.

1.5.2) *L’optimalité chez Lysiphlebus testaceipes*

En 1999, X. Fauvergue (com. pers.) a testé le modèle de McNamara & Houston (1985) dans un environnement constitué de deux patches successifs (un patch de conditionnement et un patch test) sur *Lysiphlebus testaceipes*. Les résultats se sont montrés en accord avec les prédictions du modèle : après avoir expérimenté un environnement bon (cotylédon infesté depuis trois jours par le puceron *Aphis gossypii*) le parasitoïde passe moins de temps dans un environnement moyen (deux jours d’infestation) que lorsqu’il avait tout d’abord expérimenté un environnement pauvre (un jour d’infestation) (figure 5a). L’interprétation qui a été faite sur la base de ces résultats est que *Lysiphlebus testaceipes* est capable d’apprendre sa vitesse d’acquisition moyenne afin d’optimiser son temps de résidence sur le patch.

Afin de mieux comprendre les mécanismes en cause, une expérience similaire à été réalisée, mais en limitant le nombre d’informations disponibles sur le patch informatif. Dans un premier temps, l’apprentissage du miellat seul (produit sucré élaboré par les puceron à partir de la sève des végétaux) a été testé, mais il en est ressortit que cette information, provenant pourtant directement des puceron, n’est pas apprise dans un contexte d’optimalité par *Lysiphlebus testaceipes*. Par la suite, une autre expérience (que nous appellerons désormais “l’expérience de 1999”) a donné des résultats beaucoup plus convaincants. Dans cette expérience, le patch informatif est constitué d’un cotylédon sain de concombre provenant d’une plante dont l’autre cotylédon est infesté depuis un jour ou trois jours. Les parasitoïdes, testés ensuite sur des cotylédons infestés depuis deux jours, sont resté beaucoup moins longtemps dans la colonie de puceron lorsqu’ils avaient auparavant été mis en présence du cotylédon sain provenant de la plante infesté depuis trois jours (figure 5b). Il semble par conséquent que *Lysiphlebus testaceipes* apprenne une substance chimique produite par la plante sous l’influence des puceron qui l’attaquent. Pour bien comprendre le rôle de ce type de signal chimique dans l’acquisition de ressources et l’optimisation du comportement, une approche tritrophique est nécessaire.
Figure 6 : illustration du problème de fiabilité/détectabilité chez un parasitoïde du puceron.

Figure 7 : illustration de la résolution du problème de fiabilité/détectabilité chez un parasitoïde du puceron.
1.5.3) Les synomones induites par l’herbivore

Pendant de nombreuses années, les relations entre les ressources et leurs consommateurs ont été étudiées, chez les insectes, comme des systèmes isolés, bitrophiques. Pourtant, les interactions entre les insectes sont souvent beaucoup plus complexes et ne peuvent être réellement bien appréhendées que dans un contexte multitrophique dans lequel les plantes, les herbivores et leurs ennemis ont évolué conjointement (Price et al. 1980). C’est pourquoi l’approche tritrophique a été utilisée de manière croissante au cours des dernières années afin d’obtenir une représentation plus proche de la réalité.

Un prédédateur ou un parasitoïde qui cherche à localiser un herbivore (sa proie ou son hôte) pourra non seulement utiliser les signaux chimiques émis par celui-ci (kairomones), mais également ceux émis par le premier niveau trophique, c’est à dire la plante (synomones). Le choix d’une source d’information plutôt qu’une autre dépendra alors de deux facteurs : la fiabilité de l’information (l’herbivore est-il bien présent ? est-il accessible ? est-il de bonne qualité ?) et sa détectabilité (l’information peut-elle être acquise facilement ?) (Vet & Dicke 1992).

L’information provenant de l’herbivore est très fiable, mais celui-ci n’est qu’une composante minime d’un environnement très complexe, et si cet herbivore produit effectivement des signaux chimiques, ce n’est qu’en petite quantité car la sélection naturelle devrait agir de manière à minimiser sa détectabilité. Au contraire, les signaux chimiques produits par la plante sont plus faciles à détecter du fait de leur relativement grande biomasse, mais il sont aussi beaucoup moins fiables. En effet, la présence d’une plante qui constitue la nourriture de l’herbivore recherché ne signifie pas que celui-ci est présent. Cela dépend en effet de la prédictibilité de l’infestation par l’herbivore dans l’espace et le temps (figure 6).

Plusieurs solutions à ce problème de fiabilité/détectabilité peuvent exister pour le prédédateur ou le parasitoïde. L’une d’entre elles est tritrophique : l’utilisation d’informations provenant exclusivement des plantes attaquées par l’herbivore recherché. Dicke et al. (1990) ont découvert l’émission par une plante de composés chimiques induits spécifiquement par les sécrétions orales de l’herbivore, et ont montré que ces composés avaient un effet attractif sur les prédateurs de ces herbivores. Peu de temps après, Turlings et al. (1990) ont mis en évidence le même type de mécanisme chez un parasitoïde. Depuis, ce mécanisme a été mis en évidence sur d’autres modèles biologiques (Udayagiri & Jones 1992; Mattiacci et al. 1994; Turlings et al. 1998; Kainoh et al. 1999). Ces synomones induites ont le double avantage d’être fiables et faciles à détecter (figure 7). De plus, la quantité et la qualité de ces
synomones sont très variables selon l’espèce de la plante et de l’herbivore (Takabayashi et al. 1990; Turlings et al. 1993).

Par ailleurs, la réaction de la plante est systémique : sur une plante infestée par un herbivore, les synomones spécifiques sont produits par les feuilles attaquées, mais aussi par les feuilles saines (Röse et al. 1996; Cortesero et al. 1997). Ainsi, dans l’expérience de 1999, il semble que Lysiphlebus testaceipes ait appris les synomones produites par le concombre sous l’induction des pucerons afin d’apprendre la qualité de son environnement. L’utilisation d’un tel type d’information a l’avantage d’indiquer avec certitude la présence de l’hôte sur la plante (et non sur une feuille donnée, ce qui réduit quelque peu la fiabilité de l’information).

Dans le cas d’un apprentissage permettant d’optimiser le vitesse d’acquisition dans l’environnement, l’insecte pourrait tout aussi bien utiliser les informations issues de l’hôte. En effet, il mesure sa vitesse d’acquisition pendant l’approvisionnement, et donc au contact de ses hôtes. Le miellat, par exemple, constitue une source d’information qui présente de nombreux avantages pour Lysiphlebus testaceipes (fiabilité, contact physique direct avec le parasitoïde lors de l’approvisionnement, etc.). Pourtant, comme nous l’avons vu précédemment, celui-ci n’apprend pas cette information dans le contexte d’optimalité étudié (X. Fauvergue, com. pers.). Plusieurs hypothèses peuvent expliquer cette constatation : (1) le miellat provoque une forte réponse innée chez Lysiphlebus testaceipes (Grasswitz & Paine 1993), or selon un modèle élaboré par Vet et al. (1990), les réponses faibles (à la plante par exemple) sont généralement plus variables (plus enclin à l’apprentissage) que les fortes (au miellat par exemple) ; (2) il est possible que les synomones induites par l’herbivore constituent une information plus fiable que le miellat. En effet, il a été démontré sur d’autres systèmes tritrophiques (acariens herbivores/prédateurs) que la production de synomone diminuait rapidement lorsque l’herbivore n’attaquait plus la plante (Mattiacci et al. 1994). Le miellat, quant à lui, peut demeurer de manière résiduelle sur la plante, même après la mort ou la disparition des pucerons. De plus, si la quantité de synomones produites est corrélée quantitativement avec la densité de pucerons, la fiabilité du signal est alors d’autant plus grande.

1.5.4) La notion de seuil

En 2000, une nouvelle expérience (X. Fauvergue, com. pers.), que nous appellerons dorénavant “l’expérience de 2000”, a été menée dans le but de mieux comprendre le mécanisme mis en évidence lors de l’expérience de 1999. Pour cela, la variabilité des patchs informatifs a été augmenté (zéro, deux, quatre ou six jours d’infestation) afin d'évaluer
Figure 8 : “Expérience de 2000” : temps de séjour moyens (± erreurs standards) de Lysiphlebus testaceipes sur une colonie de trois jours de pucerons Aphis gossypii après une phase de conditionnement sur un cotylédon sain provenant d’une plante infestée par une colonie de puceron dont l’âge est variable : zéro, deux, quatre ou six jours. X. Fauvergue, com. pers.

<table>
<thead>
<tr>
<th>Qualité du premier patch rencontré</th>
<th>Information</th>
<th>Qualité du second patch rencontré</th>
<th>Information</th>
<th>Prédiction</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2 jours d’infestation</td>
<td>Aucune情報</td>
<td>≤ 2 jours d’infestation</td>
<td>Aucune情報</td>
<td>Le temps de résidence est élevé</td>
</tr>
<tr>
<td>≥ 3 jours d’infestation</td>
<td>Acquisition d’information</td>
<td>≤ 2 jours d’infestation (exp. de 1999)</td>
<td>Perte d’information</td>
<td>Le temps de résidence est faible</td>
</tr>
<tr>
<td>≤ 2 jours d’infestation</td>
<td>Aucune情報</td>
<td>≥ 3 jours d’infestation (exp. de 2000)</td>
<td>Acquisition d’information</td>
<td>Le temps de résidence est élevé</td>
</tr>
<tr>
<td>≥ 3 jours d’infestation</td>
<td>Acquisition d’information</td>
<td>≥ 3 jours d’infestation (exp. de 2000)</td>
<td>Information identique</td>
<td>Le temps de résidence est élevé</td>
</tr>
</tbody>
</table>

Tableau 1 : Hypothèse relative à l’acquisition d’information chez le parasitoïde Lysiphlebus testaceipes exploitant des patchs de pucerons Aphis gossypii.
quantitativement la production de synomones induites par les pucerons. Mais les résultats de cette nouvelle expérience se sont montrés apparemment contradictoires avec ceux obtenus lors de l’expérience de 1999. En effet, le temps de résidence sur le patch ‘moyen’ (trois jours d’infestations) était le même quelle que soit l’expérience passée (Figure 8).

Une hypothèse peut être émise : il pourrait exister un effet seuil « tout ou rien » dans la perception des synomones par le parasitoïde, ou dans la production des synomones par la plante. La différence de résultat entre l'expérience de 1999 et celle de 2000 suggère que ce seuil se situerait entre deux jours et trois jours d’infestation. Ainsi, il ne pourrait y avoir acquisition d’information par le parasitoïde qu’à partir d’une infestation de 3 jours. Par conséquent, si après avoir acquis de l’information sur un patch de bonne qualité (trois jours d’infestation ou plus) l’insecte se retrouve sur un patch pauvre (deux jours d’infestation et moins), il ne retrouve pas l’information acquise précédemment : il diminue alors son temps de résidence sur le patch. En revanche, s’il rencontre un deuxième patch de bonne qualité, soit il retrouve l’information précédemment acquise (s’il vient d’un bon patch), soit il découvre une information nouvelle (s’il vient d’un mauvais patch). Son temps de résidence sera alors le même, quelle que soit la qualité du patch précédent. Le tableau 1 résume cette hypothèse.

Si cette hypothèse se révèle fausse, il est alors possible d’imaginer que la différence de résultat constatée entre l’expérience de 1999 et celle de 2000 soit alors due à d'autres différences entre les deux expérimentations, comme par exemple, la modification de la souche d’origine de Lysiphlebus testaceipes. La multiplication des niveaux de traitement pour la phase d’apprentissage sur le patch informatif nous permettra de confirmer ou d’infirmer l’existence d’un seuil de perception des synomones chez le parasitoïde.

2) **Expérimentations**

2.1) **Matériel et méthodes**

2.1.1) **Matériel biologique**

a) Lysiphlebus testaceipes

Lysiphlebus testaceipes est un endoparasitoïde qualifié de solitaire car, quel que soit le nombre d’œufs pondus dans l’hôte, un seul adulte émerge, la(les) larve(s) surnuméraire(s) étant éliminée(s) par combat physique ou par suppression physiologique (pour une synthèse sur l’écologie des parasitoïdes, se référer à Godfray 1994). Les femelles parasitent leurs hôtes en les piquant avec l’ovipositeur dans la région ventrale. Après éclosion de l’œuf, le
parasitoïde évolue en quatre stades larvaires durant lesquels le puceron est toujours en vie : la larve se nourrit d’abord de l’hémolymphe du puceron, et ce n’est que lors des derniers stades larvaires que les organes vitaux de l’hôte sont atteints. Ce dernier meurt alors que le parasitoïde achève son développement larvaire (6 à 8 jours après l’oviposition à 20°C). La larve de dernier stade tisse un cocon de soie dans lequel elle se nymphose. Le puceron mort change d’aspect, il forme une momie presque sphérique de couleur beige à brun de 2 mm de diamètre. La nymphose dure 4 à 5 jours selon la température : l’imago émerge alors de la momie en découplant un opercule de sortie. La vie d’un adulte est d’environ 6 à 7 jours à 20°C (Hagvard & Hofsvand 1991).

L’apprentissage a été peu étudié chez cette espèce, mais il existe toutefois une étude de Grasswitz & Paine (1993) qui s’intéresse de manière qualitative aux temps de résidence sur les patches. La réponse du parasitoïde aux plantes saines est significativement accrue suite à un conditionnement associatif (pucerons + plante). Le miellat, quant à lui, ne semble pas être appris mais provoque une forte réponse innée. Cela confirme les prédicitions du modèle de Vet
et al. (1990), ainsi que les résultats obtenus par X. Fauvergue (com. pers.) en testant le modèle de McNamara & Houston (1985).

b) L’hôte : Aphis gossypii

Aphis gossypii (Homoptera : Aphididae) est un puceron de petite taille (environ 2 mm pour les adultes) qui forme des colonies lenticulaires sur la face inférieure des feuilles. Il existe deux formes adultes distinctes : les aptères et les ailés. Les premiers sont les plus nombreux et les plus prolifiques. Les seconds apparaissent lorsqu’il y a surpopulation et permettent la formation de nouvelles colonies alors que les conditions trophiques se détériorent (Dixon 1973). Des patches de qualités variables sont ainsi constitués par les phénomènes de colonisation du milieu par les pucerons des deux types.

Chez la plupart des Aphididae, le cycle biologique est caractérisé par l’alternance d’une génération sexuée annuelle ovipare, et de plusieurs générations parthénogénétiques vivipares. Toutefois, Aphis gossypii est considéré comme une espèce strictement anholocyclique, c’est à dire sans apparition d’individus sexués. Le potentiel biotique de cet insecte est par conséquent particulièrement élevé.

Aphis gossypii est une espèce particulièrement polyphage qui a été décrite sur près de 300 hôtes appartenant à des familles botaniques différentes (Blackman & Eastop 1985). On note toutefois une préférence particulière pour les Cucurbitacées (concombre, melon, courgette, etc.), les Malvacées (cotonnier, hibiscus) et les Rutacées (Citrus).

c) La plante : Cucumis sativus variété Serit

Le concombre fait parti des hôtes favoris d’Aphis gossypii. Il a l’avantage d’être facile à faire pousser en serre pendant la plus grande partie de l’année.

2.1.2) conditions d’élevage

a) L’élevage de Lysiphlebus testaceipes

b) L’élevage d’Aphis gossypii

La souche d’Aphis gossypii provient également des élevages de l’INRA d’Antibes. Elle est issue d’insectes prélevés dans le sud de la France, et elle est régulièrement remise à jour par ajout de nouveaux individus prélevés dans la nature.

une expérience consiste à conditionner un parasitoïde sur une colonie de pucerons élevée dans des conditions variables, puis à tester ce parasitoïde sur une colonie standard. Pour cela, il est nécessaire de produire des colonies de pucerons de taille connue et peu variable à l’aide d’adultes virginipares aptères (femelles adultes non ailées produisant des filles par parthénogenèse thélitoque) d’un âge compris entre 24 et 48 heures. Un élevage a donc été entretenu pendant toute la durée des expérimentations. Pour cela, deux à trois boîtes circulaires en plastiques (d’un diamètre de 7 cm pour 2 cm de hauteur) sont garnies d’une couche de sable humidifiée recouverte par un disque de concombre. Ces disques sont découpés sur des feuilles provenant de plants produits en serre. Cinq pucerons adultes sont ensuite déposés au pinceau sur chacun des disques. Le lendemain, les adultes qui ont alors produit des larves de premier stade (L1) sont enlevées. Cinq jour après ce retrait, des pucerons adultes ayant 24 heures sont disponibles. L’ensemble de cet élevage est stocké dans une pièce à environnement contrôlé (20°C, L16 : D8)

c) La production de plants de concombre

Les expériences portent sur des pousses de concombre au stade deux cotylédons. Toutes les plantes testées ont le même âge quelque soit le traitement. Il est donc nécessaire de synchroniser toutes les dates de semis. Les plantes sont semées suffisamment tôt (entre 12 à 15 jours selon la période de l’année) afin d’atteindre un stade à deux cotylédons. Les conditions de production de plants de concombre varient selon l’expérience. Tous sont toutefois plantés en serre dans des petits pots individuels.

2.1.3) La phase de conditionnement

La phase de conditionnement constitue l’étape pendant laquelle le parasitoïde est mis en présence d’une information qu’il pourra éventuellement apprendre. Cette information est constituée d’un cotylédon de concombre provenant d’un plant dont le traitement est défini. Dans chacune des expériences décrites ci-après, la phase de conditionnement suit le même schéma général : isolement des parasitoïdes, accouplement, puis conditionnement à proprement parlé.
Les expérimentations nécessitent des femelles (d'un âge inférieur à 24 h) fécondées et naïves afin de pouvoir contrôler précisément leur expérience. Pour cela, des momies de pucerons sont récoltées dans les élevages un ou deux jours avant les expérimentations. Ces momies sont isolées dans des tubes en verre à raison d'une momie par tube. Chaque jour d’expérimentation, les parasitoïdes qui en émergent sont triés par sexe, puis chaque femelle est mise en présence d'un mâle. Les insectes peuvent se nourrir de miel pendant cette phase de fécondation. Une heure après, les femelles sont séparées des mâles et sont mises en présence de l’information (le cotylédon) dans un tube individuel pendant environ une heure. Le conditionnement a lieu dans une pièce à température constante (25°C).

2.1.4) La phase de test

La phase de test est la phase pendant laquelle le comportement de *Lysiphlebus testaceipes* sur un patch de puceron est observé et mesuré. Pour cela, la femelle parasitoïde est déposée sur un plant de concombre sur lequel un seul des deux cotylédons est infesté. Le temps de séjour sur le cotylédon, les coordonnées temporelles des entrées, des sorties et des piqûres sont alors enregistrées à l’aide d’un “event-recorder” (développé par E. Wajnberg) qui permet d’obtenir un éthogramme de l’exploitation du patch par l’insecte. L’hyménoptère est considéré comme définitivement hors du patch lorsqu’il passe plus de 60 secondes ailleurs que sur la face inférieure du cotylédon testé. Si le temps de séjour est supérieur à 30 minutes, l’expérience est interrompue. Le nombre de pucerons par colonie est comptabilisé.

Afin de tester l’effet de différentes modalités de conditionnement sur l’exploitation d’une colonie de pucerons, le test se fait sur une colonie standardisée de deux jours (ou trois, lorsque ceci est mentionné). Pour obtenir des patches de qualité homogène, chaque plant de concombre est infesté sur un seul cotylédon par un puceron adulte deux jours (sauf exception) avant l’expérience. Le test s’effectue l’après-midi à température constante (25°C) et à la lumière artificielle.

2.1.5) Les analyses statistiques

Afin de tester l’effet du conditionnement sur l’exploitation de la colonie d’hôtes par le parasitoïde, les temps de résidence sur les patches de pucerons sont analysés comme des données de survie (le départ d’un individu d’un patch étant considéré comme une disparition) par l’ajustement d’un modèle de Cox. Ce modèle est formulé en terme de taux de risque qui représente la probabilité par unité de temps qu’un animal quitte un patch. Ainsi, ce rapport de
risque figure la tendance qu’a une femelle à quitter une colonie de pucerons. Une description détaillée du modèle de Cox peut être trouvée dans la littérature sur les analyses de survie (Kalbfleisch & Prentice 1980; Collett 1994). Les niveaux de significativité de chaque variable dépendante ainsi que leurs interactions sont testés à l’aide d’un test de rapport de vraisemblance.

Par ailleurs, un test du χ^2 permet d’estimer l’effet des traitements de chaque expérience sur la proportion de femelles quittant la colonie sans piquer de pucerons (“zéro piqûre”). Le nombre de fois où le parasitoïde pique un puceron sur le patch est également analysé grâce à une analyse de variance. Ce nombre de piqûres est normalisé à l’aide d’une transformation log ($y = \log(x+1)$ où x est le nombre de piqûre). Enfin, la vitesse marginale du parasitoïde est mesurée en calculant l’inverse du temps écoulé entre la dernière attaque d’un puceron par le parasitoïde et la sortie définitive du patch. Cette vitesse est également analysée à l’aide d’une analyse de variance.

2.2) Expérience 1 : apprentissage des synomones et seuil de perception.

2.2.1) Questions.

Cette première expérience doit permettre de répondre à différentes questions soulevées par l'hypothèse du tableau 1. Tout d’abord, $L. testaceipes$ perçoit-il des variations continues de concentration de synomones, ou bien uniquement une valeur seuil ? En outre, s’il s’agit bien d’une valeur seuil, se situe-t-elle entre 2 jours et 3 jours d’infestation comme nous le supposons dans notre hypothèse ? Enfin, y a-t-il acquisition puis perte d’information par le parasitoïde lorsque le traitement dépasse la valeur seuil ?

2.2.2) Le conditionnement et le test

L’expérience 1 est une expérience factorielle structurée en deux traitements. Le premier d'entre eux est l’âge de la colonie sur la plante informative (de conditionnement). six niveaux de traitements sont utilisés : 0, 1, 2, 3, 4 et 5 jours. Le second traitement est l’âge de la colonie sur la plante testée. Pour ce traitement, deux niveaux sont employés : 2 et 3 jours. L’ensemble des douze combinaisons possibles de traitement constitue un block.
Figure 9 : Nombre de puceron moyen (± écart type) en fonction de l’âge de la colonie utilisée pour le conditionnement.

Figure 10 : Moyennes des temps de résidence (± erreurs standards) de Lysiphlebus testaceipes sur des colonies de pucerons d’ages variables (deux (•) ou trois (○) jours) en fonction du conditionnement ayant eu lieu sur des cotylédons sains de plants infestés depuis zéro, un, deux, trois, quatre ou cinq jours. Les moyennes et les erreurs standards ont été estimées par Kaplan-Meier.
Six “qualités” de cotylédons infestés sont donc utilisées. Ces différents niveaux de qualité sont obtenus en manipulant l’âge des colonies de pucerons (Aphis gossypii) sur un seul des deux cotylédons : 0 jour (aucun puceron), 1 jour, 2 jours, 3 jours, 4 jours et 5 jours. Le puceron produit environ neuf descendants par jour. De ce fait, l’âge de la colonie covarie avec le nombre de pucerons (Figure 9), mais aussi avec d’autres variables telles que la proportion des différents stades larvaires sur la colonie, la quantité de miellat sécrétée, et l’intensité des interactions avec la plante et les mécanismes qui y sont associés.

Un seul des deux cotylédons est infesté (sur les plants utilisés pour le conditionnement, un manchon de glu empêche la dispersion des pucerons sur le cotylédon sain). Cette manipulation permet, lors du conditionnement des parasitoïdes, d’exposer ceux-ci à l’autre cotylédon qui présente certains caractères d’une feuille infestée (sécrétions de réactions de défenses induites par les pucerons par exemple), tout en étant dépourvue de pucerons. Après infestation, les plantes sont stockées sous cloche (petite cage individuelle) pour empêcher toute contamination extérieure. Afin d’obtenir une homogénéité des expérimentations, toutes les plantes de la même répétition sont mises sous cloches en même temps, quel que soit la durée d’infestation utilisée lors du traitement.

Les plants se développent en serre, mais ne peuvent plus y rester suite à leur infestation (à cause des risques d’infestations d’autres plants), ils sont ensuite disposés dans un phytotron à environnement contrôlé (20°C, L16 : D8, lampes à sodium + lampes UV). Afin d’obtenir des conditions expérimentales homogènes, tous les plants d’une même journée de test sont placé dans ce phytotron au même moment, soit cinq jours avant l’expérience.

Pour chacune des douze modalités, l’objectif est d’atteindre une vingtaine de répétitions. L’ordre dans lequel chaque niveau de traitement est testé à l’intérieur d’un block est randomisé. Un block est testé par jour.

2.2.3) Résultats

a) Les temps de résidence

La figure 10 illustre les temps de résidence moyens pour chacun des niveaux de traitement testés. L’analyse des données nous indique qu’il n’y a pas d’interaction entre les deux traitements ($\chi^2 = 12.1 ; ddf = 11 ; p = 0.355$). L’âge des colonies sur lesquelles les parasitoïdes sont conditionnés n’a pas d’effet sur le temps de résidence ($\chi^2 = 2.21 ; ddf = 5 ; p = 0.819$). En revanche, la différence est significative selon l’âge de la colonie sur la plante utilisée pour le test ($\chi^2 = 4.4 ; ddf = 1 ; p = 0.036$).
Figure 11 : Nombre de piqûre de *Lysiphlebus testaceipes* sur des colonies d’*Aphis gossypii* en fonction du temps de résidence.

Figure 12 : Gain cumulé (calculé à partir du nombre du nombre de piqûre) de *Lysiphlebus testaceipes* lors de l’exploitation de colonies de puceron âgées de deux jours (▲) ou de trois jours (■). Les courbes correspondent à la fonction gain de l’équation (6) (voir dans le texte). Les paramètres estimés (et leur intervalle de confiance à 95 %) sont : $H = 7.29$ (IC 95% = 0.27) et $\beta = 0.29$ (IC 95% = 0.06) pour la courbe du bas ; $H = 10.64$ (IC 95% = 0.28) et $\beta = 0.24$ (IC 95% = 0.04) pour la courbe du haut.
b) Le nombre de piqûres et la vitesse marginale

La proportion de femelles qui quittent le patch sans avoir piqué de pucerons dépend de l'âge de la colonie testée (21 % sur les colonies testées de deux jours, 5 % sur celles de trois jours) ($\chi^2 = 11.85$; ddl = 1 ; $p = 0.0006$). Le nombre de piqûres (compris entre 0 et 32) est corrélé au temps de résidence sur un patch (corrélation de Pearson : $r = 0.698$; $p = 0.0001$; voir figure 11). En outre, l'interaction entre les deux traitements n'a pas d'effet sur ce nombre de piqûres ($F_{5,192} = 0.06$; $p = 0.89$). Il n’est également pas influencé par le conditionnement de l’insecte ($F_{5,192} = 0.72$; $p = 0.61$). Par contre, une femelle pique davantage sur un patch de trois jours que sur un patch de deux jours ($F_{1,192} = 17.5$; $p = 0.0001$). La vitesse marginale d’acquisition des parasitoïdes, quant à elle, n’est influencée ni par le conditionnement ($F_{5,192} = 1.74$; $p = 0.13$), ni par le test ($F_{1,192} = 3.29$; $p = 0.07$). Ainsi, les parasitoïdes quittent toutes les colonies avec la même vitesse marginale, quel que soit la qualité de cette colonie. En outre, la fonction de gain tracée à partir des données réelles est croissante et à accélération négative (figure 12).

c) Interprétation

Cette expérience indique que Lysiphlebus testaceipes n’apprend pas les synonymes induites par les pucerons lors de l’exploitation des colonies. Par contre, plus un patch est de bonne qualité, plus le temps de résidence et le nombre de piqûres sont élevés.

Ces résultats réfutent l’hypothèse de départ selon laquelle une différence de temps de résidence aurait dû être observée sur les colonies tests de deux jours en fonction de l’expérience passée. En outre, ces résultats sont différents de ceux obtenus en 1999 par X. Fauvergue (com. pers.) pour lesquels le patch testé était infesté depuis deux jours, et le patch de conditionnement depuis un ou trois jours.

Deux principales hypothèses peuvent être émises. La première est liée à la qualité du matériel de l’expérimentation (souche de parasitoïde, plantes, terreau,...) : celui-ci peut avoir changé au cours des années. La seconde hypothèse pouvant expliquer la différence avec les résultats de l’expérience de 1999 est liée à une différence de manipulation des végétaux. En effet, la recherche des différences entre l’expérience de 1999 et l’expérience 1 a permis de déterminer une dissemblance apparemment minime dans les protocoles : dans l'expérimentation de 1999, les plantes ont été placées dans le phytotron uniquement au moment de leur infestation, c’est à dire soit 3 jours avant le test, soit 1 jour avant le test, pour les colonies de 3 jours et 1 jours respectivement. Ainsi, le niveau du traitement (l’âge de la colonie) a covarié avec une autre variable, le temps de séjour des plantes dans le phytotron.
Les seules informations disponibles pour les parasitoïdes sur les cotylédons utilisés lors du conditionnement sont issues de la plante. Ainsi, toute différence chimique induite par un quelconque stress peut potentiellement être détectée et apprise par les insectes. Or, outre la présence du pucerons sur le reste de la plante, le changement d’environnement (passage d’une serre à un phytotron) peut également constituer une source de stress non négligeable qui peut éventuellement modifier la chimie de la plante. Cette source de stress covarie avec le stress provoqué par la présence de pucerons dans le cas de l’expérience de 1999, tandis qu’elle est constante quel que soit le niveau de traitement dans le cas de la présente expérience. L’expérience qui suit devra permettre de tester l’effet de ce stress sur le comportement des parasitoïdes.

2.3) Expérience 2 : effet des pucerons et du phytotron sur la plante

2.3.1) Question

quelle est, entre l’âge des colonies et le temps de résidence de la plante dans la serre, le facteur appris qui influence l’exploitation des colonies d’hôtes par les parasitoïdes ?

2.3.2) Le conditionnement et le test

L’expérience 2 est factorielle. Un des traitements reproduit la situation de 1999 : les plants de conditionnement sont placés dans le phytotron le jour même de leur infestation : soit un jour, soit trois jours avant le test. L’autre traitement reproduit une situation identique pour les plants de conditionnement, mais en absence de pucerons : soit un jour, soit trois jours dans le phytotron. L’ensemble des quatre modalités constitue un block.

Tous les plants utilisés pour la phase de test à l’issu du conditionnement des parasitoïdes sont infestés pendant deux jours et demeurent dans le phytotron pendant cette même période. De même que pour l’expérience 1, les différents niveaux d’infestation des plantes sont obtenus en manipulant l’âge des colonies de pucerons sur un seul des deux cotylédons : un jour, deux jours et trois jours. Chaque plant de conditionnement du premier traitement est disposé dans le phytotron le jour même de son infestation (soit un jour, soit trois jours avant le test). Les plants de conditionnement du second traitement subissent les mêmes temps de séjour dans le phytotron, mais ne sont pas infestés. La résume le protocole.

Pour chaque plant de conditionnement du premier traitement, un manchon de glu est déposé sur le pétiole du cotylédon à infester afin d’empêcher les pucerons de quitter celui-ci.
Figure 13 : Moyennes des temps de résidence (± erreurs standards) de *Lysiphlebus testaceipes* sur des colonies de puceron âgées de deux jours en fonction du conditionnement. Le conditionnement du parasitoïde s’effectue sur des cotylédons provenant de plants ayant passé soit un jour, soit trois jours dans le phytotron. La moitié de ces plants sont infestés sur l’autre cotylédon pendant la même durée. * = sans pucerons ; o = avec pucerons. Les moyennes et les erreurs standards ont été estimées par Kaplan-Meier.
Les plants de conditionnement du second traitement subissent le même sort sur l’un de leur cotylédon afin de limiter l'expérimentation aux seuls facteurs qui nous intéressent (présence des pucerons et temps de séjour dans le phytotron). Tous les plants commencent leur développement en serre et sont stockés sous cloches individuelles dès lors qu’ils intègrent le phytotron.

Pour chacune des quatre modalités, 25 répétitions sont planifiées. L’ordre dans lequel chaque niveau de traitement est testé pour un block donné est déterminé de manière aléatoire. Quatre blocks sont testés par jour.

2.3.3) Résultats

a) Les temps de résidence

Il n’y a pas d’interaction entre le facteur “puceron” et le facteur “phytotron” ($\chi^2 = 0.11 ;\text{ ddl} = 2 ; p = 0.88$). Comme l’illustre la figure 13, la présence de pucerons sur les plants de conditionnement n’a aucun effet sur les temps de résidence ($\chi^2 = 0.03 ;\text{ ddl} = 1 ; p = 0.867$). En revanche, la durée de séjour dans le phytotron modifie significativement la motivation des femelles parasitoïdes à rester sur le patch testé ($\chi^2 = 9.64 ;\text{ ddl} = 1 ; p = 0.002$) : Les temps de résidence sur les colonies de pucerons sont en moyenne de 455 secondes (erreur standard = 75) lorsque la plante de conditionnement est restée un jour dans le phytotron, et de 265 secondes (erreur standard = 41) lorsqu’elle y est restée trois jours.

b) Le nombre de piqûres et la vitesse marginale

La proportion de femelles quittant la colonie sans avoir piqué de pucerons (“zéro piqûre” : 20 % au total) n’est influencée que par le temps de séjour dans le phytotron ($\chi^2 = 6.35 ;\text{ ddl} = 1 ; p = 0.012$). Tout comme lors de l’expérience 1, le nombre de piqûres (entre 0 et 22) est corrélé positivement avec le temps de résidence sur les patchs (corrélation de Pearson : $r = 0.712 ; p = 0.0001$). En outre, l’analyse du nombre de piqûres montre qu’il n’y a pas d’interaction entre les deux traitements ($F_{1,95} = 0.14 ; p = 0.38$). La présence de pucerons sur les plantes utilisées pour le conditionnement des parasitoïdes n’a pas d’effet sur le nombre de piqûre ($F_{1,95} = 0.96 ; p = 0.33$), tandis que le temps de séjour dans le phytotron en a un ($F_{1,95} = 4.88 ; p = 0.03$) : les nombres de piqûres sont plus importants lorsque le parasitoïde a été conditionné sur une plante ayant séjourné une journée dans le phytotron. Il en est de même pour la vitesse marginale : il n’y a pas d’interaction entre traitements ($F_{1,95} = 3.25 ; p = 0.07$) ni d’effet “pucerons” ($F_{1,95} = 0.59 ; p = 0.443$), mais il y a un effet “phytotron” ($F_{1,95} = 4.42 ; p = 0.038$). On constate que la vitesse marginale est plus élevée
lorsque l’insecte reste moins longtemps sur le patch testé : la vitesse marginale est de 0.52 piqûres par minute pour le niveau de traitement “un jour dans le phytotron”, et de 0.63 piqûres par minutes pour le niveau de traitement “trois jours dans le phytotron”. En effet, comme nous l’avons vu, la fonction de gain du parasitoïde est convexe du fait de la dépédition du patch. Par conséquent, on s'attend à ce que la vitesse marginale de l'insecte soit d'autant plus élevé qu'il quitte tôt la colonie.

c) **Interprétation**

dans les mêmes conditions expérimentales, on trouve les mêmes résultats que ceux obtenus en 1999. Par conséquent, il semble qu’il ne s’agisse pas d’une modification du matériel biologique qui est à l’origine des résultats apparemment contradictoires qui ont suivi lors de l'expérience de 2000 et l’expérience 1. En fait, contrairement à l’hypothèse initiale, le degré d’infestation du plant de conditionnement n’a aucune influence sur le temps de résidence d’un parasitoïde sur le patch testé. Les résultats positifs obtenus en 1999 ne semblent pas liés à la présence de pucerons, mais uniquement au temps de séjour des plants dans le phytotron. Cette expérience 2 nous indique donc que le parasitoïde est capable d’apprendre une information qui modifie son comportement sur une colonie de pucerons sans que les pucerons eux-mêmes soient impliqués.

L’expérience qui suivra devra permettre de comprendre un peu mieux les mécanismes en cause en explorant davantage les effets du phytotron sur les temps de résidence de *Lysiphlebus testaceipes* sur des patchs de pucerons.

2.4) **Expérience 3 : variabilité de la réponse au temps de séjour dans le phytotron**

2.4.1) **Questions**

Les résultats obtenus lors de l’expérience 2 nous montrent qu’il y a un effet du temps de séjour de la plante dans le phytotron sur l'exploitation de colonies de pucerons par *Lysiphlebus testaceipes*. L’objectif est maintenant d’augmenter la variabilité des temps de séjour et de rajouter des témoins (parasitoïdes dont le conditionnement est effectué sur un cotylédon d’une plante entièrement élevée en serre ; parasitoïdes ne passant pas par la phase de conditionnement) afin de mieux comprendre le mécanisme en cause (effet à plus long terme du phytotron, comportement des insectes témoins).
Figure 14 : Moyennes des temps de résidence (± erreurs standards) de *Lysiphlebus testaceipes* sur des colonies de pucerons âgées de deux jours en fonction du conditionnement. Le conditionnement du parasitoïde s’effectue sur des cotylédons provenant de plants ayant passé un temps variable dans le phytotron (○) : zéro, deux, quatre, six ou huit jours. Un parasitoïde témoin n’ayant pas été conditionné est également testé (●). Les moyennes et les erreurs standards ont été estimées par Kaplan-Meier.
2.4.2) **Le conditionnement et le test**

Cette nouvelle expérience s’affranchit totalement du traitement “pucerons” et ne s’intéresse qu’à l’effet du phytotron sur les comportement des parasitoïdes. L’unique traitement est le temps de séjour de la plante dans le phytotron : 0 (témoin), 2, 4, 6 et 8 jours. Un parasitoïde témoin entièrement naïf (pas de conditionnement) est également testé. L’ensemble des niveaux de traitements constitue un block.

Le parasitoïde conditionné sur des plantes ayant passé un temps variable dans le phytotron est testé sur une colonie de pucerons âgée de deux jours, élevé sur une plante ayant poussé uniquement en serre (contrairement aux expériences précédentes). Pour chacune des six modalités, 20 répétitions sont effectuées. L’ordre dans lequel chaque niveau de traitement est testé est randomisé. Deux blocks sont testés par jour.

2.4.3) **Résultats**

a) Les temps de résidence

La figure 14 présente les temps de résidence moyens en fonction des temps de séjour dans le phytotron. L’analyse des résultats révèle que le traitement a un effet sur le temps de résidence d’un parasitoïde sur une colonie de pucerons ($\chi^2 = 19.7 ; \text{ddl} = 5 ; p = 0.001$). De même que pour l’expérience 2, on constate que plus les plants de conditionnement passent du temps dans le phytotron, plus les temps de résidence des parasitoïdes sur les patchs testés sont faibles. Toutefois, à partir de huit jours dans le phytotron, ces temps de résidence atteignent à nouveau leur maximum (604 secondes en moyenne ; erreur standard = 131). Un insecte naïf qui n’a rien expérimenté avant le test reste très peu de temps sur la colonie de pucerons (213 secondes en moyenne ; erreur standard = 42).

b) Le nombre de piqûres et la vitesse marginale

La proportion de femelles qui quittent le patch sans avoir piqué de pucerons dépend du temps de séjour des plants de conditionnement dans le phytotron ($\chi^2 = 13.22 ; \text{ddl} = 5 ; p = 0.021$) : il est par exemple de 10 % pour le traitement “zéro jour dans le phytotron”, et de 47 % pour le traitement “pas de conditionnement”. L’effet est le même pour le nombre de piqûres (de 0 à 25) ($F_{5,108} = 3.63 ; p = 0.004$) qui suit la même tendance que le temps de résidence (minimum pour les niveaux de traitements quatre et six jours de phytotron ; maximum pour les niveaux de traitements zéro et huit jours de phytotron). La vitesse
marginale suit la tendance inverse ($F_{5,108} = 2.95 ; p = 0.015$) : elle est élevée lorsque le temps de résidence est faible, et inversement. Ceci concorde avec le fait que la fonction de gain soit croissante et à accélération négative.

c) Interprétation

Les résultats obtenus lors de l’expérience 2 sont ici confirmés : le temps de séjour dans le phytotron semble entraîner une modification des plants de concombre que les parasitoïdes sont capables de percevoir et sans doute d’apprendre.

3) Discussion générale

Face à un environnement dans lequel les ressources sont agrégées en patchs de qualités variables, le modèle de McNamara & Houston (1985) suggère qu’un animal pourra maximiser son aptitude phénotypique s’il apprend la qualité de son environnement et ajuste ses temps de résidence en fonction de la valeur relative de chaque patch rencontré. Très peu d’études ont tenté de tester ce modèle sur les parasitoïdes sans doute en partie à cause du manque de connaissance des mécanismes d’acquisition d’information en cause (voir cependant Fauvergue et al. soumis). L’expériences de 1999 (X. Fauvergue, com. pers.) a semblé confirmer le modèle en indiquant par ailleurs que l’information utilisée par *Lysiphlebus testaceipes* était constituée des synonymes produites par la plante sous l’induction spécifique des pucerons. Pourtant, l’expérience de 2000 et l’expérience 1 ont contredit cette hypothèse. L’expérience 2 qui a suivi a mis en évidence l’effet d’une erreur de protocole sur l’interprétation des résultats. Ainsi, la présence de pucerons sur la plante de conditionnement n’a aucun effet sur le temps de résidence des parasitoïdes sur les colonies testées : *Lysiphlebus testaceipes* ne semble pas apprendre les éventuelles synonymes produites par le concombre en réponse à l’infestation des pucerons. Par contre, le facteur semblant influer sur le comportement d’approvisionnement est la durée pendant laquelle la plante utilisée pour le conditionnement a séjourné dans un phytotron à environnement contrôlé (20°C, L16 : D8), le début du développement se déroulant en serre.

3.1) La physiologie de la plante

Il est clair que lors du passage d’une serre à un phytotron, la plante se trouve bien loin de ses conditions naturelles. Le protocole de l’expérience de 1999 a cependant révélé un phénomène qui existe bel et bien, mais dont l’intérêt écologique est encore inconnu. En effet,
la plante a émit un signal qui a été appris par le parasitoïde, et dont la production est liée à la longueur du séjour dans le phytotron.

Au niveau de la plante, l’hypothèse la plus probable est la réponse à un stress induit par un changement d'environnement. En effet, il existe de nombreuses différences entre les deux types d’environnement : température, hygrométrie, photopériode, intensité lumineuse, spectre lumineux ou composition gazeuse de l’air (proportion d’oxygène et de gaz carbonique). Tous ces éléments ont une importance dans la physiologie de la plante, et pourraient être à l’origine d’un stress chez celle-ci.

Pour autant, les différentes expériences ont été réalisées à des périodes distinctes de l’année et donc dans des conditions environnementales (notamment dans la serre) variables. La température et la photopériode, par exemple, sont très changeants au cours du temps dans la serre, tandis qu’ils sont parfaitement constants tout au long de l’année dans le phytotron. L’hygrométrie, quant à elle, n’est pas contrôlée dans ce phytotron, mais elle est néanmoins beaucoup plus stable que dans la serre du fait de la constance de la température. Malgré cela, les résultats obtenus lors des expériences ont toujours donné les mêmes tendances. L’intensité lumineuse, le spectre lumineux et la composition gazeuse de l’air n’ont pas été comparés dans les deux types d’environnement, mais il est vraisemblable que de fortes différences existent.

La plante pourrait ainsi, dès son arrivée dans le phytotron, se trouver en carence (intensité lumineuse par exemple) ou en excès (certaines longueurs d’onde de la lumière) d’un élément ayant un rôle dans son développement. Mais les résultats obtenus lors de l’expérience 3 laissent supposer qu’il ne s’agit pas d’un phénomène de ce type. En effet, le comportement de *Lysiphlebus testaceipes* est identique sur la colonie testée qu’il ait été conditionné sur un cotylédon d’une plante s’étant développée douze jours en serre ou sur un cotylédon d’une plante s’étant développée quatre jours en serre puis huit jours dans le phytotron (figure 14). Il semblerait donc qu’il y ait un phénomène d’adaptation aux nouvelles conditions rencontrées. Par conséquent, le stress ne serait pas provoqué par une carence ou un excès, mais uniquement par un choc physiologique global et temporaire lié au changement d’environnement.

La nature exacte du processus de stress en cause est toutefois inconnue. En effet, l’évaluation de ce stress au travers des expériences 2 et 3 ne nous permet pas de conclure quant au type de modifications chimiques ou physiques intervenant. Ainsi, il n’est pas possible, aux vues des résultats, d’affirmer que cette modification est quantitative ou qualitative. Par ailleurs, si elle était quantitative, elle pourrait aussi bien se traduire par un accroissement de la concentration d’une substance chimique préexistante que par une diminution.
3.2) L’intérêt écologique de l’apprentissage pour *Lysiphlebus testaceipes*

La mise en évidence d’un apprentissage par *Lysiphlebus testaceipes* lors de l’exploitation de colonies de puceron nous amène à nous interroger sur l’intérêt écologique d’un tel phénomène pour le parasitoïde.

Une des principales hypothèses qui puisse être émise est l’apprentissage par l’insecte de l’odeur de la plante sur laquelle il émerge. En effet, comme nous l’avons vu, *Lysiphlebus testaceipes* est un parasitoïde généraliste dont l’hôte peut se trouver sur des plantes très différentes. Apprendre l’odeur de la première plante qu’il rencontre permettrait à un jeune insecte d’orienter ses recherches sur cette plante puisque sa propre émergence est le signe de la présence de puceron sur ce type de végétal. En outre, il n’y aurait, selon Steinerg *et al.* (1993), pas de biotype chez *Lysiphlebus testaceipes*. Ayant étudié ce parasitoïde sur *Aphis gossypii* se nourrissant sur du concombre ou du coton, ils ont en effet démontré un effet conditionnant de la plante sur *Lysiphlebus testaceipes*. De plus, ce parasitoïde montre une nette préférence pour la plante sur laquelle il a émergé par rapport à celle sur laquelle il s’est développé. Un mécanisme semblable a été mis en évidence chez un autre parasitoïde de puceron *Aphidius colemani* (Storeck *et al.* 2000).

Ainsi, les différents traitements pratiqués sur les plantes de conditionnement lors des expériences 2 et 3 pourraient être responsables de modifications chimiques suffisamment importantes pour que *Lysiphlebus testaceipes* considère les différents niveaux de traitement comme des plantes différentes. Cette hypothèse reste toutefois à vérifier.

3.3) L’optimisation du comportement de *Lysiphlebus testaceipes*

La compréhension du phénomène d’apprentissage lié au temps de séjour des plants dans le phytotron nous a sensiblement éloigné du modèle de McNamara et Houston (1985) et de l’optimalité. Pourtant, les résultats de l’expérience de 2000 et de l’expérience 1 ne remettent pas foncièrement en cause l’existence du mécanisme décrit dans le modèle. En effet, les conditions expérimentales utilisées sont relativement éloignés des conditions écologiques réelles : les plants sont très jeunes (entre 12 et 15 jours) et la variabilité des traitements n’est pas d’une très grande amplitude (de 0 à 8 jours d’infestation dans l’expérience de 2000). Il est possible que l’échelle utilisée soit trop petite par rapport aux conditions écologiques réelles pour pouvoir révéler l’optimisation de la vitesse d’acquisition d’hôtes chez *Lysiphlebus testaceipes*.

24
Certaines plantes telles que quelques variétés de crucifères ne semblent pas produire de synomones sous l'induction d'herbivores : la seule différence constatée entre les plantes attaquées par des herbivores et les plantes saines ou manuellement dégradées est la concentration de certains volatils beaucoup plus élevée chez les premières (Takabayashi et al. 1998). S'il s'agit du même type de mécanisme dans le cas du concombre attaqué par le puceron, il est possible que le stress provoqué par les pucerons à l'échelle des différentes expériences réalisées soit insuffisant. En revanche, si la production des signaux chimiques en cause est également accrue sous l'effet d'un stress environnemental, alors il se pourrait que les expériences 2 et 3 aient mis involontairement en évidence un mécanisme permettant, dans des conditions naturelles, l'optimisation du comportement.

3.4) Perspectives

Lors de ce travail de recherche, l'objectif initial était de tester le modèle d’optimalité avec acquisition d’information de McNamara & Houston (1985) mais en se fondant sur une information particulière : les synomones produites par la plante sous l'induction des pucerons. L'hypothèse a été rejetée, mais il serait néanmoins intéressant de tester le modèle dans des conditions écologiques plus réalistes. En effet, comme nous l’avons évoqué précédemment, les plants et les colonies de pucerons étaient de petite taille dans les différentes expériences. L'utilisation de plants de grande taille, et d’une variabilité des colonies de pucerons beaucoup plus élevée, pourrait constituer un meilleur terrain pour tester le modèle. De plus, l’infestation des plants devrait avoir lieu sur les feuilles plutôt que sur les cotylédons. En effet, il s’avère que les propriétés chimiques ainsi que la production de synomones d’une plante sont très variables selon l’organe considéré (Turlings et al. 1991). Ceci a pu ajouter un biais supplémentaire lors les expériences précédentes.

Par ailleurs, les mécanismes d'acquisition d’information chez les parasitoïdes sont souvent le résultat d’un apprentissage associatif (Turlings et al. 1993). Dans un tel contexte, le conditionnement devrait être fait au contact de l’information testée, mais également de pucerons sains qui constituerait la récompense que Lysiphlebus testaceipes associerait à l’information.

Enfin, les résultats obtenus lors des expériences 2 et 3 pourraient être précisés davantage. Une quatrième expérience a déjà été entreprise dans cette optique. Son objectif était de reproduire les résultats obtenus précédemment mais en se libérant totalement du facteur “phytotron” et de la plante. Pour cela, des extraits ont été faits à partir de plants de concombre s’étant développés soit entièrement en serre (douze jours), soit six jours en serre.
puis six jours dans le phytotron. Les résultats n’ont cependant pas été concluants, probablement à cause du solvant utilisé (acétone). L’expérience devrait être reconduite avec un autre solvant tel que l’hexane qui est régulièrement utilisé pour ce type de protocole (voir par exemple Suiter et al. 1996; Dutton et al. 2000). Si les résultats sont similaires à ceux obtenus lors de l’expérience 3, les traitements de l’expérience qui suivra pourront n’être constitués que d’extraits de plantes entièrement élevées en serre, mais à des concentrations différentes. Ce protocole testera l’hypothèse selon laquelle les différences chimiques induites par le phytotron sont quantitatives. L’identification des composés en causes pourrait également être effectuée.

L’ensemble des résultats obtenus met en lumière la nécessité de maîtriser chaque paramètre d’une expérience de la meilleure manière qui soit. Le stress de la plante engendré par le changement brusque d’environnement peut ainsi avoir des répercussions importantes dans le cadre d’expérimentations faisant intervenir l’aspect “utilisation d’un signal de la plante”. Le développement d’une plante devra dorénavant être intégralement réalisé dans un environnement homogène pour ce type d’expérience.
BIBLIOGRAPHIE

Fauvergue X., Hopper K.R. & Wajnberg E. soumis. Dispersal of optimal foragers in a patchy environment : model and field experiments on the parasitoid *Aphelinus asychis*. :

RESUME

Ce modèle a été testé sur *L. testaceipes* et son hôte *Aphis gossypii* (Homoptera : Aphididae) infestant du concombre. Après une phase de conditionnement pendant laquelle *L. testaceipes* a été mis en présence d’un stimulus (un cotylelön de concombre dont le traitement est défini), le temps de résidence du parasitoïde a été mesuré sur des colonies de pucerons standards. Une première expérience a semblé indiquer l’existence d’un comportement optimal basé sur une information particulière : les réactions de la plante à l’infestation par les pucerons. Toutefois, des expériences ultérieures ont réfuté cette hypothèse : la taille des colonies présentes sur les plantes utilisées pour le conditionnement n’a aucun effet sur le temps de résidence du parasitoïde. Les résultats apparemment positifs de la première expérience sont en réalité dus à une modification de la plante causée par un changement brusque de son environnement pendant son développement. Plus précisément, la réponse du parasitoïde sur les colonies de pucerons est fonction de la durée qui sépare l’expérimentation du choc environnemental subi par les plantes utilisées pour le conditionnement.

La prédiction initiale a donc été rejetée, mais de nouvelles hypothèses peuvent être émises quant à l’intérêt écologique du mécanisme qui a été mis en évidence. *L. testaceipes* pourrait apprendre l’odeur de la plante sur laquelle il a émergé de manière à orienter préférentiellement ses recherches d’hôtes dans le type d’environnement duquel il vient. Par ailleurs, le changement brusque d’environnement pourrait avoir provoqué chez la plante un stress dont les mécanismes impliqués sont de même nature que lors d’attaques par des pucerons dans des conditions plus proches des conditions naturelles que lors des expérimentations. Toutefois, la nature chimique ou physique de la modification de la plante n’a pas été élucidée, et d’autres expériences doivent être entreprises avant de tirer de plus amples conclusions.

Mots clés : *Lysiphlebus testaceipes*, apprentissage, relations tritrophiques, synomone, stress environnemental.